Ремонт Стены Уход

Физические свойства теста.

Сила пшеничной муки характеризуе I ее способность образовывать тесто, обладающее определенными реологическими свойствами. Исхо­дя из этого, методы определения реологических свойств теста одновре­менно являются и методами определения силы муки.

Реологические свойства теста. Тесто является оводнеииым кол­лоидным комплексом - полидисперсоидом, обладающим определен­ной внутренней структурой и весьма своеобразными непрерывно изме­няющимися реологическими свойствами.

В зависимости от вида деформации, ее скорости и длительности те­сто может вести себя то как идеально упругое тело, то как вязкое, то как сочетающее эти свойства, т. е. относящееся к упруго-вязким материа­лам.

В тесте сочетаются такие свойства, как упругость, пластичность, прочность, вязкость, способность к релаксации напряжений и упругому последействию. Реологические свойства теста зависят от таких факто­ров, как температура, влажность, продолжительность и интенсивность механического воздействия на тесто, рецептура, способ приготовления и длительность брожения теста, хлебопекарные свойства и в первую очередь сила муки и др.

Приготовление теста и его переработка сопровождается сложными физико-химическими, биохимическими, микробиологическими и ме­ханическими процессами, влияющими па его реологические свойства. Поэтому исследование реологических свойств полуфабрикатов и про­дуктов хлебопекарного производства представляет большой не только научный, но и практический интерес.

Значительную роль в развитии теории и методов исследования ре­ологических свойств разных продуктов и материалов сыграли работы П. А. Ребипдера и его школы, М. П. Воларовича и ряда других исследо­вателей.

На основе представлений, развивавшихся П. А. Ребиндером и его школой, реологические свойства теста могут быть охарактеризованы кривыми деформации теста во времени при постоянном напряжении. Кривые кинетики деформации получают в период приложения нагруз­ки и после ее снятия.

Для получения таких кривых деформации теста могут быть использованы: прибор Бойлера-Ребиндера. работающий по принципу тангенциального смещения пластинки в исследуемом продукте; приборы Шведова и Воларовича с коаксиаль­ными цилиндрами, из которых внутренний поворачивается в исследуемом продук­те; прибор Толстого, несколько видоизмененный Николаевым, на котором чистый сдвиг осуществляется в слое теста между плоскопараллельными твердыми поверх­ностями в отсутствие пристенного скольжения.



P>P e


P>P k


Рис. 5 . Кривые кинетики деформации сдвига при постоянной величине Р


Для материалов, обладающих комплексом реологических свойств, в зависимо­сти от приложенного постоянного напряжения (Р) возможны три типа кривых кине­тики деформации, изображенные па рис. 5.


1. При Р < Р е (Р е - нижний предел упругости) может быть получена кри­вая кинетики деформации типа, изображенного на рис. 5, а. В этих условиях дефор­мации исследуемый материал ведет себя как идеально упругое тело.

Деформация ε 0 , условно-мгновенно (практически за 0,5-1 с) достигнутая в мо­мент τ 0 , является чисто упругой деформацией, сохраняющейся постоянной во все время приложения напряжения.

В момент снятия напряжения т, вся упругая деформация полностью исчезает.

Однако для структурированных высокомолекулярных систем, какой является тесто, значения Р е весьма малы и близки к нулю. Поэтому кривая кинетики дефор­мации типа, изображенного на рис. 5, а, для теста практически вряд ли может быть получена.

2. При Р > Р е < Р k (Р k - предел текучести данного материала) кривая кине­тики деформации будет иметь вид, изображенный на рис. 5, б.

При этих условиях исследуемый материал испытывает условно-мгновенную упругую деформацию е 0 . Затем начинается период упругого последействия, в кото­ром деформация нарастает до некоторого предела е m и далее сохраняет свое значение неизменным до момента снятия приложенного напряжения.

Упругое последействие обусловлено неоднородностью материала по его струк­туре и составу, в связи с чем упругие деформации развиваются в разных частях мате­риала с различным замедлением. Упругое последействие характерно для эластич­ных или упруговязких материалов.

В момент снятия приложенного напряжения т, практически мгновенно спада­ет условно-мгновенная упругая деформация и затем постепенно с затухающей ско­ростью спадает и деформация упругого последействия (ε m –ε 0 ).

Как видим, при этом режиме испытания все виды деформации являются упру­гими и полностью обратимыми.


3. При Р > Р k кривая кинетики деформации будет иметь вид, изображен­ный на рис. 5, в.

В момент τ 0 происходит условно-мгновенная упругая деформация е 0 . Однако в связи с тем что Р > Р k , дальнейший ход кривой кинетики деформации при постоян­ном значении Р отражает не только эластичную деформацию упругою последейст­вия, но и постепенно нарастающую остаточную, необратимую деформацию. На этом участке кривой скорость развития деформации во времени стремится к наименьше­му, постоянному для данного материала при данном режиме испытания значению скорости развития остаточной деформации (dε/dτ) ост.

С момента достижения этого значения скорости деформации происходит уже только остаточная деформация. Исследуемый материал переходит в состояние ста­ционарного течения.

Общая упругоэластичная деформация характеризуется на оси ординат отрез­ком ε m отсекаемым пунктирным продолжением прямой части этого участка кривой. Угол α. наклона этого прямого участка кривой остается постоянным независимо от длительности опыта. Отрезок ε m -ε 0 на оси ординат характеризует величину элас­тичной деформации упругого последействия.

При снятии в момент τ 1 , приложенного напряжения практически мгновенно спадает условно-мгновенная деформация ε 0 и затем постепенно со все падающей скоростью, спадает эластичная деформация упругого последействия. Однако вслед­ствие имевших место при испытании материала остаточных необратимых деформа­ций после прекращения обратной (разгрузочной) деформации наблюдается оста­точная деформация ε ост. Остаточная (после разгрузки системы) деформация может быть определена по формуле

ε ост = τ 1 (dε/dτ)

Для характеристики реологических свойств теста и подобных ему материалов могут быть использованы в качестве вариантных показателей:

1) модуль мгновенной упругости Е 1 , определяемый по формуле

2) модуль упругого последействия (модуль эластичности) Е 2 , определяе­мый по формуле

Е 2 = Р/(ε т - ε о);

3) релаксационная вязкость η 1, представляющая собой вязкость в условиях
течения, возникающего при Р> Р к определяемая по формуле


η 1 = Р- Р к (dε/dτ) ост


4) условная вязкость упругого последействия η 2 , определяемая при Р > Р е и Р к по формуле

η 2 = (Р- Р е)/ (dε/dτ) о

где (dε/dτ) о равно начальной, наибольшей скорости развития эластичной деформа­ции упругого последействия; при Р> Р к

η 2 =

5) нижний предел упругости Р е;

6) предел текучести Р k .

Более детально основы реологии пищевых продуктов изложены в специальных руководствах .

В последние годы в реологии пищевых продуктов все больше вни­мания стали уделять их текстуре.

Под текстурой пищевого продукта понимают те его свойства, ко­торые человек органолептически ощущает при прикосновении к про­дукту или его ощупывании и в процессе употребления его в пищу - от­кусывании, разжевывании и проглатывании.

Одной из задач реологии пищевых продуктов является установле­ние зависимости между характером и интенсивностью органолептически воспринимаемых ощущений текстуры продукта и его чисто реоло­гическими инструментально определяемыми свойствами, а также и с его макро- и микроструктурой.

Применительно к хлебопекарному производству существенную роль текстура может играть при органолептической оценке состояния и реологических свойств полуфабрикатов (опары, теста и др.), особенно при определении качества и состояния готовой продукции (хлеба, бу­лочных и других видов изделий), что будет рассмотрено в гл. XIV.

Методы определения в производственных лабораториях силы муки по реологическим свойствам теста. В производственных лабора­ториях хлебопекарной промышленности для определения силы пше­ничной муки по реологическим свойствам теста из нее могут быть при­менены ниже описываемые методы.

Определение силы муки по расплываемости шарика теста. Этот ме­тод был разработан в МТИППе в 1937 г. Определяется расплываемость шарика из 100 г теста заданной влажности при 30 °С за 60,120и 180 мин. При этом фиксируются численные значения среднего диаметра конту­ра шарика теста (в мм): начального (D 0), через 60 мин (D 60), через 120 мин (D 120) и через 180 мин (D 180). Численные значения этих показате­лей выражаются в мм. Чем сильнее мука, тем соответственно ниже их численные значения.

Для текущего производственного контроля вполне достаточно определение D 0 и D 60 шарика теста. Описание методики определения дано в лабораторном практикуме .

Определение силы муки по консистенции теста. Для объективного определения консистенции теста применяют специальные приборы - консистометры (пенетрометры). С помощью этих приборов определя­ют консистенцию теста но глубине погружения (пенетрации) в него тела погружения определенной формы, за определенное время и под определенной нагрузкой (Р о6щ) системы погружения. В МТИППе еще в


1936 г. был разработан метод определения консистенции теста па кон­систометре погружения, изготовлявшемся заводом МОСКИП.

Готовили тесто с влажностью, постоянной для каждого сорта муки, и темпера­турой 30 °С. Замешенное тесто в течение 60 мин подвергалось автолизу при той же температуре. Затем определяли глубину пенетрации тела погружения прибора в тес­то, выражавшуюся в ед. шкалы прибора. Этот показатель обозначили К 60 теста. Чис­ленное значение К 60 теста было тем больше, чем слабее была мука, и тем меньше, чем она была сильнее.

В последующие годы нами была разработана и методика определе­ния К 60 теста на современных автоматизированных пенетрометрах (АП-4/1,АП-4/2идр.).

В данной методике мы приняли проведение автолиза теста в тече­ние 60 мин не при 30, а при 35 °С. Это повысило степень дифференциа­ции величин К 60 теста для проб пшеничной муки, различных по силе. Детальное описание методики дано в лабораторном практикуме .

Определение силы муки на фаринографе. Фарипограф, производи­мый фирмой «Брабендер», применяется в мукомольной и хлебопекар­ной промышленности многих стран.

Основными частями фаринографа (рис. 6, а) являются: месилка /; электродви­гатель-динамометр 2; стойки 3 электродвигателя-динамометра; система рычагов 4, соединяющая корпус электродвигателя-динамометра с указывающим и самопишу­щим устройствами; масляный амортизатор 5; указывающее устройство б; самопи­шущее устройство 7; водяной термостат 8, в котором температура воды на заданном уровне поддерживается автоматически. Термостат снабжен центробежным насосом, прогоняющим воду по резиновым трубкам между двойными стенками месилки и масляного амортизатора 5 в направлении, указанном на схеме стрелками. Для изме­рения количества воды, заливаемой в месилку, служит бюретка 9.

Порядок работы и принцип действия фаринографа таковы. В корытце месилки 1 засыпают отвешенное количество муки, а из бюретки 9 вливают необходимое ко­личество воды. Количество доливаемой воды определяется во время пробного заме­са и должно обеспечить получение теста с заданным уровнем максимума консистен­ции. Тестомесилка имеет две фасонные месильные лопасти, вращающиеся в проти­воположных направлениях. Вал месилки муфтой соединяется с валом электродвигателя-динамометра 2. Отличием этого электродвигателя-динамометра от обычного электродвигателя является то, что его статор не закреплен на плите ма­шины, а способен смещаться вокруг своей оси, концы его (втулки для вала ротора) находятся в подшипниках стоек 3.

Конструкция и принцип действия электродвигателя-динамометра таковы, что чем больше сопротивление, оказываемое тестом, замешиваемым в месилке месиль­ным рычагом, тем больше отклоняется электродвигатель-динамометр от своего ис­ходного положения, слегка поворачиваясь вокруг своей оси.

Отклонения электродвигателя-динамометра системой рычагов 4 передаются стрелке указывающего устройства 6 и перу самопишущего устройства 7. Уменьше­ние сопротивления замешиваемого теста вызывает обратное смещение электродви-

гателя-динамометра, а следовательно, стрелки указателя и пера самопишущего прибора.

Назначение детали 5 - амортизировать рывки, являющиеся следствием периодического изменения сопротивления теста месильным рычагам. Сопротивление это меняется вследствие того, что фасонные лопасти вращающихся рычагов то сходятся, то расходятся. Даже после амортизации этих рывков кривая, записываемая при­бором, как мы увидим ниже, отражает все же отдельные колебания с различной и переменной амплитудой.

Между двойными стенками амортизатора прогоняется вода, температура которой с помощью терморегулирующего устройства термостата поддерживается на постоянном уровне, что обеспечивает неизменную вязкость масла.

При исследовании реологических свойств теста в процессе его за­меса с помощью фаринографа получается кривая - фаринограмма (рис. 6, б).

Фаринограммы замеса характеризуют следующие свойства теста:

1. Консистенция теста, максимальная величина которой на рисунке обо­значена размером а

Рис. 6. Фаринограф (а) схема фаринограммы )

012345678901234567890123456789 τ,мин


Как видно из приведенной фаринограммы, консистенция теста изменяется в течение всего времени замеса: возрастает в первый период замеса, затем некоторое время удерживается на максимально достигнутом уровне и постепенно снижается от середины ширины полосы кривой.

Обычно рекомендуют испытывать различные образцы муки при постоянном численном значении максимума консистенции теста, обозначенной на сетке фари­нограммы цифрой 500 (вся лента по ширине разбита на 1000 условных единиц). Раз­мер а характеризует заданную величину максимума консистенции.

2. Время образования теста, т. е. время в течение которого величина кон­систенции исследуемого в процессе замеса теста достигает своего максимума. Чис­
ленное значение этого показателя обозначено размером Ь.

3. Эластичность и растяжимость теста, характеризуемые шириной по­лосы кривой (точнее - амплитудой колебания пера самопишущего прибора, из ко­торых эта полоса складывается).

На схеме максимально достигнутое численное значение эластичности и растя­жимости обозначено размером с.

Чем шире кривая (чем больше амплитуда колебаний), тем эластичнее и растя­жимее тесто в этот момент.

4. Стабильность (устойчивость) теста, характеризующая длитель­ность сохранения тестом максимального уровня консистенции при замесе. Числен­ное значение этого показателя характеризуется размером d.

5. Разжижение (размягчение) теста, соответствующее разности между
максимально достигнутой при замесе консистенцией a max и консистенцией в конеч­ный момент замеса. Численное значение этого показателя на фаринограмме обозна­чено размером е.

Однако фаринограф можно использовать не только для изучения реологических свойств теста во время замеса, но и для исследования из­менения реологических свойств теста в процессе брожения или автоли­за.

При такого рода испытаниях замешивают не только муку и воду, но и дрожжи (если хотят изучить тесто в процессе его брожения) и любые другие, обусловливаемые целью опыта добавки.

После замеса определенной длительности (обычно 10 мин) месил­ку останавливают и тесту дают в течение часа бродить (или просто оставляют в покое для автолиза), после чего месилку вновь включают и в течение определенного времени производят как бы обминку теста, за­тем оставляют еще на час в покое и после второй обминки снова остав­ляют па час в покое, чередуя эти приемы в течение всего времени, обу­словленного назначением опыта.

На рис. 7 приведена фаринограмма двухчасового брожения теста, замешенного из муки, воды и дрожжей.

Первый отрезок кривой характеризует изменение реологических свойств теста в процессе замеса в течение 10 мин. Первый интервал соответствует первому часу брожения теста. Следующий за этим отрезок кривой характеризует реологические свойства в процессе первой пятиминутной обминки теста, второй интервал соответ­ствует второму часу брожения, после чего идет кривая второй обминки.

Для количественного со­поставления различных фари-нограмм между собой желате­льна их цифровая характери­стика

2) консистенцию теста в момент окончания замеса (обозначенную в случае, если замес длится 10 мин, сим­волом а 10 , если 20 мин - а 20 и т. д.), выражаемую в тех же условных единицах конси­стенции;

3)консистенцию теста в определенные промежуточные моменты замеса;
например, при замесе в течение 60 мин фиксировалось значение не только а мах и а 60 ,
но и а 30 , а иногда и а 10 ,

4) значение е 10 , е 20 и т. д., определяемое по разности между а мах и а 10 , а 20 и
т. д, выражаемое в тех же условных единицах консистенции;

5) время достижения замешиваемым тестом максимума консистенции b,
выражаемое в минутах;

6) величину максимальной эластичности и растяжимости теста с, выража­
емую в миллиметрах ширины полосы кривой, причем попутно фиксируется и время
достижения этого максимума, например, если после 2 мин замеса достигнут макси­
мум эластичности теста при ширине кривой в этот момент 17 мм, то с m ах = с 2 = 17 мм,

7) эластичность и растяжимость теста в момент окончания замеса во все
промежуточные моменты, когда фиксируется численное значение показателя кон­систенции теста.

При цифровой обработке фаринограммы брожения (или автолиза) для перво­го отрезка кривой замеса фиксируются величины.


а мах, b, a 10, e 10, c max и с 10



Для каждого из последующих отрезков кривой, соответствующих очередной пятиминутной обминке, фиксируются величины:

а мах, b, a 5, e 5, c max и с 5

В кривых обминок при их цифровой обработке отбрасывается отрезок за пер­вые полминуты работы тестомесилки, так как в ряде случаев характер кривой на этом отрезке зависит не столько от реологических свойств теста, сколько от первона­чального сопротивления теста введению в него (или проворачиванию в неподвиж­ной его массе) лопастей месилки.

В некоторых случаях исследования реологических свойств теста в процессе его длительного замеса были зафиксированы первый максимум консистенции а мах1 и время его достижения b 1 , второй максимум консистенции а мах2 и время его достиже­ния b 2 , а также третий максимум консистенции а тлх3 и время его достижения b 3.


Первый максимум консистенции можно считать максимумом, обусловленным смешением муки и воды. Второй максимум связывают с процессом набухания, про­текающим в тесте, а третий максимум - с возрастанием липкости теста, а следовате­льно, прилипания его к стенкам месилки в процессе работы.

Чем сильнее мука, тем больше на фаринограмме замеса значения а 10 , bи d и тем меньше значение е 10 , а на обминочных кривых тем больше значения a max , а 5 и тем ме­ньше значение е 5 .

Фирма «Брабендер» выпустила и другую модель прибора - Do-Corder, позволяющую в конструктивно усиленной тестомесилке-тестообразователе с переменной частотой вращения рабочих орга­нов определять силу пшеничной муки в условиях, приближающихся к приготовлению теста па современных агрегатах с интенсивной механи­ческой обрабожой теста.

В Венгрии производился прибор для определения силы муки по реологическим свойствам теста в процессе его замеса, носящий наз­вание валориграф. Этот прибор компактнее фаринографа фирмы «Бра­бендер» и позволяет получать кривые, аналогичные получаемым на фарипографе. В США для определения силы муки применяется и миксограф Свенсона и Уоркипга, также представляющий собой регистри­рующую сопротивление теста месилку.

Определение силы муки на экстенсографе. В дополнение к фарипографу фирма «Брабепдер» выпускает прибор экстенсограф, на котором тесто, замешенное на фарипографе, испытывается па растяжение до разрыва. При этом на лете самописца вычерчиваются кривые (экстенсограммы), характеризующие сопротивление теста растяжению (Р экст) и величину растяжения до момента разрыва (L экст).

За последнее время было предложено по площади, ограниченной кривой экстенсограммы (W экст ), выражаемой в см 2 , судить о работе, затраченной на деформа­цию растяжения теста

Чем сильнее мука, тем больше значения показателен Р экст н W экст и тем меньше L экст.

Определение силы муки на алъвеографе. Альвеограф производится фирмой «Шопен» (Франция).

Прибор (рис. 8, а) состоит из двух составных частей: месилки и собственно альвеографа. Месилка имеет устройство, выпрессовывающее после замеса пластину теста, всегда одинаковую по размерам и плотности. Собственно альвеограф представляет собой прибор, в котором определяются реологические свойства пласта теста, зажатого герметически между фланцами. Пластина теста выдавливается воздухом в виде все увеличивающегося пузыря. Стенки этого пузыря становятся все тоньше и тоньше, и, наконец, в момент, зависящий от свойств теста, пузырь лопается. Давление воздуха создается поднятием на определенный уровень склянки с водой, вытесняющей при этом воздух из бюретки.

Давление воздуха, создаваемое в процессе испытания образца теста, регистри­руется в виде кривой на бумажном бланке, закрепляемом на барабане кимографа



12

13

10 11


Рис. 8. Альвеограф (а) и альвеограммы (б):

1 - переносная склянка с тубусом; 2 - градуированный сосуд; 3 - воздушная камера; 4 - крыш­ка; 5 - затворный клапан; 6 - трехходовой кран, 7 - резиновая груша; 8 - шкаф для расстойки; 9 - выключатель; 10 - распределительный валик; 11 - арретир; 12 - кимограф; 13 - механический мано­метр; 14 - стрелка самопишущего прибора; 15 - водяная камера с краном; I - сильная мука; II - сла­бая мука

(самопишущего механизма.). Кривые, получаемые на альвсограмме, характеризуют силу муки.

Испытанию подвергают образцы теста, замешенного из муки и 2,5%-ного рас­твора поваренной соли. Соотношение муки и раствора соли устанавливается с таким расчетом, чтобы на 250 г муки влажностью 14,3% приходилось 125 мл солевого рас­твора. Тесто должно иметь температуру 25 °С.

Замес теста в месилке альвсографа длится 6 мин, после чего тесто выталкивает­ся специальным приспособлением через выпускное отверстие месилки на прием­ную пластинку. Сформованные стандартные по размерам диски теста перемещают­ся для отлежки в термостат альвеографа при 25 °С. Испытание на альвеографс про­изводится через 26 мин с момента начала замеса.

На рис. 8, б приведены примерные альвеограммы сильной (I) и слабой (II) муки.

Для характеристики альвеограмм используются следующие их показатели: Р альв - максимальная ордината альвеограммы, выражающая упругость теста; L альв - абсцисса альвеограммы - растяжимость теста; W альв - площадь альвеограммы -


удельный расход энергии на деформацию испытуемого теста, выражаемый в Дж * 10 -4 .

Чем сильнее мука, тем больше величины Р альв и W альв.

В настоящее время для характеристики теста ГОСТом 28795-90 (ИСО-5530-4-83) предусмотрено определение реологических свойств теста с помощью альвеографа. Этот метод рекомендуется применять для определения качества новых сортов пшеницы и оценки использова­ния их для промышленности, для определения соотношения различ­ных сортов пшениц в смесях перед помолом и проверки эгих смесей, для составления промышленных сортов муки путем установления со­отношения различных потоков муки в смеси и стабильности смешива­ния.

Зависимость между показателями отдельных методов определе­ния силы муки по реологическим свойствам теста. Чем сильнее пше­ничная мука, тем больше значения показателей b и d. фаринограмм, Р и W альвеограмм и экстенсограмм и тем меньше значение е фариног­рамм, L альвеограмм и экстенсограмм и показателей D 180 и K 60 теста.

Поэтому между численными значениями отдельных из этих пока­зателей существует закономерная либо прямая, либо обратная корреля­ционная зависимость. Значения коэффициента корреляции между от­дельными упомянутыми показателями лежат обычно па уровне от 0,7 до 0,9.

Применение чисто реологических методов определения реологи­ческих свойств теста с выражением их в соответствующих абсолютных реологических единицах целесообразно в исследовательских лаборато­риях.

Замес теста - важнейшая технологическая операция, от которой в значительной степени зависит дальнейший ход технологического процесса и качество хлеба. При замесе теста из муки, воды, дрожжей, соли и других составных частей получают однородную массу с определенной структурой и физическими свойствами, чтобы в последующем при брожении, разделке и расстойке тесто хорошо перерабатывалось.
С самого начала замеса в полуфабрикатах начинают происходить различные процессы--физические, биохимические и др. Существенная роль в образовании пшеничного теста принадлежит белковым веществам. Нерастворимые в воде белки муки, соединяясь при замесе с водой, набухают и образуют клейковину. При этом белки связывают воду в количестве, примерно в два раза превышающем свою массу, причем 75 % этой воды связывается осмотически.
Набухшие белковые вещества муки образуют как бы каркас теста губчатой структуры, что и определяет растяжимость и эластичность теста. Основная часть муки (зерна крахмала) адсорбционно связывает большое количество воды. Значительное количество воды поглощается также пентозанами муки.
Крахмал связывает воду в количестве 30 % от своей массы. Но поскольку в муке крахмала значительно больше, чем белков, количество воды, связанное белками и крахмалом, примерно одинаково.
В тесте одновременно образуется как жидкая фаза, состоящая из свободной воды, водорастворимых белков, сахара и других веществ, так и газообразная фаза, образованная за счет удержания пузырьков воздуха, в атмосфере которого происходит замес, и за счет пузырьков углекислого газа, выделяемых дрожжами. Следовательно, тесто представляет собой полидисперсную систему, состоящую из твердой, жидкой и газообразной фаз. От соотношения фаз в этой полидисперсной системе зависят физические свойства теста. Наряду с физическими и коллоидными процессами в тесте под действием ферментов муки и дрожжей начинают проходить и биохимические процессы. Наибольшее влияние оказывают протеолитические ферменты муки, которые дезагрегируют белок, что действует на физические свойства теста. Однако соприкосновение теста во время замеса с кислородом воздуха значительно снижает дезагрега-ционное влияние протеолитических ферментов. В меньшей степени действуют и амилолитические ферменты, расщепляющие крахмал. Механическое воздействие месильного органа на тесто, образующееся при замесе, в первый период способствует набуханию белков и образованию губчатого клейковинного каркаса, что улучшает физические свойства теста.
Белки ржаной муки отличаются от белков пшеничной муки тем, что в ржаном тесте не образуется губчатого клейковинного каркаса. Значительная часть белков ржаной муки в тесте неограниченно набухает и переходит в коллоидное состояние. В ржаной муке содержится около 3 % высокомолекулярных углеводных соединений - слизей.
Из белков, слизей и других составных частей теста (растворимых декстринов, соли, водорастворимых веществ муки), перешедших в вязкое коллоидное соединение, в ржаном тесте образуется вязкая жидкая фаза, от состояния которой в значительной степени зависят физические свойства ржаного теста.
Ржаное тесто характеризуется большой вязкостью, пластичностью и малой упругостью, эластичностью. Ржаное тесто мало растягивается.
На физические свойства ржаного теста оказывает влияние соотношение пептизированных и ограниченно набухших белков, которое в основном зависит от кислотности ржаного теста, от содержания в нем молочной кислоты. Поэтому тесто для ржаного хлеба изготавливается с значительно более высокой кислотностью, чем для пшеничного.
При недостаточно высокой кислотности ржаного теста пептизированные белки не переходят или слабо переходят в жидкую фазу. В процессе замеса теста повышается его температура, так как механическая энергия замеса частично переходит в тепловую, что в начальной стадии замеса ускоряет образование теста.
Все описанные выше физические, коллоидные, химические и биохимические процессы в тесте взаимодействуют друг с другом, что вызывает непрерывное изменение физических свойств теста в ходе технологического процесса.

БРОЖЕНИЕ И СОЗРЕВАНИЕ ТЕСТА
В процессе брожения тесто и другие полуфабрикаты не только разрыхляются, но и созревают, т. е. достигают оптимального состояния для дальнейшей переработки.
Созревшее тесто имеет определенные реологические свойства, достаточную газообразующую и газоудерживающую способность.
В тесте накапливается определенное количество водорастворимых веществ (аминокислот, сахаров и др.), ароматических и вкусовых веществ (спиртов, кислот, альдегидов).
Тесто становится разрыхленным, значительно увеличивается в объеме.
Созревание и разрыхление теста происходит не только при его брожении от замеса до разделки, но и во время разделки, расстойки и в первые минуты выпечки, так как по температурным условиям брожение на этих стадиях продолжается.
Созревание теста основано на микробиологических, коллоидных и биохимических процессах. Основные микробиологические процессы - это спиртовое и молочнокислое брожение.
Спиртовое брожение. Брожение, вызываемое дрожжами,- сложный процесс, протекающий в несколько стадий с участием многочисленных ферментов. Суммарное уравнение спиртового брожения не дает представления о его сложности.
Брожение начинается уже при замесе теста. В первые 1 - 1,5 ч дрожжи сбраживают собственные сахара муки, затем, если в тесто не добавлена сахароза, дрожжи начинают сбраживать мальтозу, образующуюся при гидролизе крахмала под действием З-амилазы.
По характеру производства дрожжи имеют низкую мальтазную активность, так как их выращивают в среде, лишенной мальтозы (мелассы). Перестройка ферментного аппарата дрожжевой клетки на образование мальтозы требует некоторого времени. Ввиду этого после сбраживания собственных сахаров муки интенсивность газообразования в тесте падает, а затем (когда начинает сбраживаться мальтоза) вновь возрастает. Таков характер газообразования в безопарном тесте, приготовленном без добавления сахара.
В опаре дрожжевые клетки адаптируются к мучной среде, мальтазная активность клеток повышается. Вследствие этого в тесте, приготовленном на опаре, дрожжи сбраживают мальтозу более равномерно и интенсивно.
Если в тесто добавлена сахароза, то она уже через несколько минут после замеса под действием инвертазы дрожжей превращается в глюкозу и фруктозу. Инвертный сахар усваивается дрожжами более легко, чем мальтоза, поэтому в присутствии сахарозы мальтоза практически не сбраживается. Интенсивность спиртового брожения зависит от количества бродильной активности дрожжей, от рецептуры, температуры и влажности теста, от интенсивности замеса теста, от добавленных при замесе улучшителей и содержания в среде веществ, необходимых для жизнедеятельности дрожжей. Газообразование в тесте ускоряется и быстрее достигает максимума при увеличении количества дрожжей или повышении их активности, при достаточном содержании сбраживаемых сахаров, аминокислот, фосфорнокислых солей. Повышенное содержание соли, сахара, жира тормозит процесс газообразования. Брожение ускоряется при добавлении амилолитических ферментных препаратов, молочной сыворотки. Особенно влияет на процесс спиртового брожения температура теста. С повышением начальной температуры теста с 26 до 35 °С интенсивность газообразования возрастает в два раза. На 20-30 % ускоряет брожение интенсивный замес теста.
Молочнокислое брожение. Брожение в полуфабрикатах вызывается различными видами молочнокислых бактерий. По отношению к температуре молочнокислые бактерии делятся на термофильные (оптимальная температура 40-60 °С) и мезо-фильные (нетермофильные), для которых оптимальной является температура 30-37 °С. В полуфабрикатах хлебопекарного производства наиболее активны мезофильные бактерии. вышается количество водорастворимого азота (примерно до 30-35 % от общей массы азотистых веществ). Продукты гидролиза белковых веществ (полипептиды, аминокислоты) необходимы для жизнедеятельности дрожжей и молочнокислых бактерий. Содержание образовавшихся аминокислот в процессе брожения теста падает вследствие потребления их бродильной микрофлорой. Большое значение продукты протеолиза имеют для образования красящих и ароматических веществ на стадии выпечки хлеба.
В тесте образуется губчатый клейковинный каркас, пленки клейковины обволакивают крахмальные зерна и отрубистые частицы.
При брожении значительно меняются реологические свойства теста, снижается его упругость и вязкость, тесто становится более пластичным. Газоудерживающая способность теста увеличивается.
Количество и качество сырой клейковины существенно изменяется.
Определенная часть клейковины образует промежуточную фазу, сильно гидратированную, которая не выделяется из теста отмыванием, но и не переходит в раствор. По мнению К. Н. Чижовой, эта подвижная промежуточная фаза клейковины, распределяясь по всей массе теста, обусловливает в значительной степени улучшение его реологических свойств.
Изменение крахмала муки. Этот процесс изучен недостаточно. Отмечают, что крахмал, по-видимому, вступает в соединения с поверхностно-активными веществами и некоторыми три-глицеридами. Общее содержание крахмала вследствие гидролиза р-амилазой муки незначительно уменьшается.
Зерна крахмала адсорбционно связывают около 30 % всего количества влаги теста.
Влияние поваренной соли, сахара и жировых продуктов. На процессы брожения и реологические свойства теста влияние этих веществ весьма значительно.
Поваренная соль добавляется в тесто в количестве 1-2,5 % от массы муки.
Поваренная соль тормозит процессы спиртового и молочнокислого брожения, так как вызывает плазмолиз дрожжевых клеток. При 4-5%-ном (от общей массы муки) содержании соли в тесте спиртовое брожение практически прекращается (рис. 18).
Соль большое влияние оказывает на реологические свойства клейковины, причем характер этого влияния зависит от исходного качества клейковины. Соль задерживает процесс набухания и частичного растворения клейковины в полуфабрикатах из муки, удовлетворительной по силе. В полуфабрикатах из слабой муки поваренная соль тормозит дезагрегацию клейковины и улучшает ее реологические свойства.
Активность амилолитических и протеолитических ферментов иод воздействием поваренной соли несколько снижается, а температура клейстеризации крахмала повышается.
Вязкость полуфабрикатов, приготовленных из муки удов-тетворительного качества, соль снижает. Если полуфабрикаты приготовлены из слабой муки, то добавление соли увеличивает
вязкость.
Тесто, приготовленное без соли, - слабое, липкое; тестовые заготовки во время расстойки расплываются. Брожение идет интенсивно, сбраживается почти весь сахар теста, поэтому хлеб имеет бледную корку.
Жиры в значительных количествах (10% и более) снижают бродильную активность дрожжей. Считают, что жиры, обволакивая дрожжевые клетки, затрудняют доступ в нее питательных веществ.
Добавление в тесто жира до 3 % от общей массы муки улучшает реологические свойства теста, увеличивает объем хлеба, повышает эластичность мякиша.
Во время брожения теста определенная доля жиров вступает в соединения с белками клейковины и крахмалов муки. Такие комплексы улучшают реологические свойства теста, повышают его газоудерживающую способность. Доказано, что общее содержание жировых продуктов в процессе приготовления хлеба не изменяется, но доля свободных липидов уменьшается. Степень взаимодействия жиров с компонентами теста повышается при эмульгировании жира перед замесом теста и добавлением в эмульсию ПАВ. Жиры, в состав которых входят полиненасыщенные жирные кислоты, укрепляют клейковину и благоприятно влияют на объем хлеба.
При дозировке сахара и жира более 10 % к общей массе муки процесс брожения замедляется (рис. 19). Сахар, как и соль, вызывает плазмолиз дрожжевых клеток, однако действие сахара в этом направлении намного слабее. Сахар дегидратирует набухающие белки и поэтому разжижает тесто. Вязкость теста при добавлении сахара снижается.
Определение готовности бродящих полуфабрикатов. Тесто, поступающее на разделку, должно быть выброженным (созревшим). Недостаточно выброженное («моложавое») тесто содержит мало продуктов протеолиза, клейковинный каркас не имеет оптимальной структуры. Несозревшее тесто - липковатое, так как процессы набухания полимеров муки еще не закончены и его кислотность не достигает нормы. В тесте остается много несброженных сахаров. Хлеб из такого теста имеет ряд дефектов: пониженную и грубую пористость, сыропеклый мякиш, пресный вкус и др.
Перебродившее тесто характеризуется повышенной кислотностью, малым содержанием несброженного сахара, ослаблением клейковинного каркаса. Хлеб из такого теста имеет бледную корку, кислый вкус, пустоты и разрывы в мякише.

Выброженная опара должна иметь равномерно-сетчатую структуру, резкий спиртовой запах. При слабом нажатии пальцев на ее поверхность опара должна опадать. Хорошо выброженное тесто увеличивается в объеме в 1,5-2 раза, имеет выпуклую поверхность и специфический аромат. Брожение теста в отличие от опары) должно быть закончено до его опадания. Если слегка надавить на поверхность «моложавого» теста, то следы от пальцев выравниваются быстро, у выброженного теста - медленно, на поверхности перебродившего теста остаются углубления.

Способы, ускоряющие созревание теста . Для ускоренного созревания и брожения теста применяют (в различной комбинации) следующее: увеличивают дозировку дрожжей, опары (закваски), интенсифицируют замес теста, повышают начальную температуру у теста, добавляют улучшители.
Увеличение дозировки дрожжей или активация дрожжей, взятых по норме на замес опары или теста, интенсифицирует процесс созревания теста.
Повышение дозировки опары (закваски) на приготовление теста увеличивает число дрожжей и молочнокислых бактерий в тесте, содержание кислот, набухших белков и продуктов протеолиза, содержание ароматообразующих веществ.
Интенсивный замес теста ослабляет структуру белковых веществ и крахмала, интенсифицирует процессы брожения и созревания теста.
Повышение начальной температуры теста до температуры 32-33 °С значительно ускоряет процессы созревания, однако повышение температуры до 34-35 °С отрицательно действует на дрожжи и ослабляет клейковину.
Добавление улучшителей (амилолитические ферментные препараты, неферментированный солод, сахар и др.) стимулирует сахаро- и газообразование в тесте.

Способы, замедляющие созревание полуфабрикатов . Иногда возникает необходимость замедлить созревание уже замешенных полуфабрикатов, например при внезапных перерывах в работе. В этих случаях полуфабрикаты охлаждают или добавляют в них соль и пищевую соду. Охлаждение до температуры 24-26 °С надежно задерживает микробиологические и автолитические процессы в полуфабрикатах. С этой целью в летнее время опары и закваски заливают холодной водой с добавлением соли, что задерживает созревание на несколько часов. Соль снижает активность ферментов, укрепляет структуру белков, подавляет жизнедеятельность бродильной микрофлоры.

ПРИГОТОВЛЕНИЕ РЖАНОГО И РЖАНО-ПШЕНИЧНОГО ТЕСТА
Основная масса ржаного хлеба готовится из муки ржаной обойной и обдирной. В последние годы резко, сократилось производство хлеба из муки ржаной обойной, но увеличилась выработка хлеба из смеси ржаной и пшеничной.
Ржано-пшеничный хлеб готовится по тем же технологическим схемам, что и хлеб из одной ржаной муки.
Особенности химического состава ржаной муки определяют особенности приготовления ржаного теста.
В ржаном тесте нет клейковины, значительная часть белков муки растворима в воде или растворах солей.
В ржаной муке (и тесте) находится активная а-амилаза, превращающая крахмал в декстрины.
Крахмал ржаной муки гидролизуется легче, чем пшеничный.
Переход значительной части крахмала при выпечке хлеба в декстрины обусловливает липкость хлебного мякиша.
Ввиду этого ржаное тесто при всех способах его приготовления имеет высокую кислотность (9-12 град). Такая кислотность инактивирует а-амилазу, улучшает реологические свойства теста, предупреждает липкость мякиша.
Высокую кислотность теста обеспечивают ржаные закваски, содержащие большое количество кислот и кислотообразующих бактерий.

    Отсюда можно сделать вывод, что основные характеристики бродящего теста - вязкость и отношение вязкости к модулю - зависят не только от соответствующих характеристик клейковинных белков, но и влияния других соединений зерна.

    Объемный выход формового, а также H/D подового хлеба в пределах каждого из трех сортов пшеничной муки зависят от вязкости и отношения вязкости к модулю бродящего теста. Вязкость оказывает обратное влияние на величину объемного выхода и прямое влияние на величину H/D . Отношение вязкости к модулю оказывает прямое влияние на обе указанные характеристики качества хлеба.

    Степень влияния вязкости и отношения вязкости к модулю на физико-механические показатели качества хлеба может быть неодинаковой и взаимно направленной. Она зависит как от величины этих характеристик структуры теста, так и режимов его технологической обработки. Несмотря на это, данные табл. 4.3 позволяют объяснить полученные результаты не только сортом муки, но и зависимостью от величин вязкости и отношения вязкости к модулю теста. Так, значительную разницу в удельном объеме формового и H/D подового хлеба из муки высшего, I или II сортов при одинаковой примерно вязкости теста следует объяснить прежде всего неодинаковыми величинами их отношений вязкости к модулю. Полученные нами результаты позволяют констатировать, что сорт зерна, смолотого даже по одной и той же технологической схеме, оказывает влияние на газоудерживание и структурно-механические свойства теста, полученного из каждого сорта муки трехсортного помола. Вязкость и отношение вязкости к модулю бродящего теста из пшеничной сортовой муки можно использовать в качестве характеристик, предопределяющих физико-механические показатели формового и подового хлеба. Поэтому представлялось целесообразным их определение и нормирование для простого теста из товарной муки основных сортов, получаемого на московских предприятиях в условиях действующих технологических режимов производства.

    Путем массовых измерений упруго-пластичных характеристик сброженного, готового к разделке теста и статистической обработки результатов были установлены средние оптимальные (М±δ) величины вязкости и отношения вязкости к модулю для трех сортов пшеничной и ржаной товарной муки (табл. 4.4).

    Таблица 4.4

    Средние оптимальные величины вязкости и η/Е бродящего теста (D=0,003 с )

    Мука Влажность теста,% η , Па с η/Е, с
    Пшеничная I сорта 44,5 4 - 7 80
    Ржаная
    обойная 52,0 1,2 – 1,8 16
    обдирная 49,0 1,3 – 2,0 35

    Сравнивая данные табл. 4.4. и 3.14, можно видеть, что бродящее тесто из пшеничной муки I сорта имеет, как и в табл. 3.1 и 4.1, значительно большие, а ржаное тесто обоих сортов -меньшие, чем у небродящего теста, величины вязкости и отношения вязкости к модулю.

    Основной причиной снижения вязкости и отношения вязкости к модулю бродящего теста из ржаной обойной муки следует считать растворение его соединений кислотами теста.

    Исследования влияния подкисления молочной кислотой небродящего теста из трех образцов ржаной обойной муки показали, что все образцы подкисленного (до нормы бродящего) теста имели меньшую вязкость и отношение вязкости к модулю, чем у неподкисленного. Это следует отнести за счет частичной пепти-зации набухающих белков и других соединений ржи растворами органических кислот.

    ВЛИЯНИЕ СОВРЕМЕННЫХ СПОСОБОВ ТЕСТОВЕДЕНИЯ НА МЕХАНИЧЕСКИЕ СВОЙСТВА ТЕСТА И КАЧЕСТВО ХЛЕБНЫХ

    ИЗДЕЛИИ

    За последние годы в СССР и за рубежом проведены работы, показавшие возможность сокращения расхода муки и времени на приготовление хлебных изделий. Это достигается применением технологических схем, предусматривающих механическое воздействие на опару и тесто, активирующее их брожение. В основу таких схем заложено применение больших жидких (влажностью около 70%) или густых (влажностью 40-50%) опар.

    Жидкие опары имеют вязкость на 1-2 десятичных порядка меньшую, чем густые; последние трудно перекачивать наверх; их после сбраживания разводят водой. Установлено, что разведенные опары имеют вязкость значительно ниже, чем неразведенные соответствующей влажности; при брожении вязкость опар снижается.

    Сокращение продолжительности брожения опары и теста достигается более продолжительным интенсивным воздействием в процессе замешивания. При этом снижается количество отмываемых из теста белков клейковины, увеличивается содержание водорастворимых азотистых соединений, углеводов, повышаются атакуемость крахмала амилазой и бродильная активность дрожжей. Перечисленные процессы повышают объемный выход теста и хлеба, улучшают структуру пористости мякиша, форму подовых изделий.

    Указанные характеристики хлебных изделий улучшаются также путем дополнительной механической обработки теста в процессах его разделки. Однако чрезмерная механическая обработка может привести к ухудшению физико-механических характеристик изделий, поэтому необходима ее оптимизация. В качестве критерия степени механического воздействия на тесто при его замешивании предлагается величина удельной работы. Она колеблется в зависимости от влагоемкости муки от 12 до 50 Дж/г.

    На основании изложенного можно сделать следующие выводы.

    Бродящее тесто в отличие от небродящего является более сложной двояко напряженной коллоидной дисперсной системой, включающей газовую фазу, имеющую поэтому пониженную плотность. Его пенообразная пористая масса, непрерывно образуя С0 2 , увеличивает объем - коалесцирует вследствие выравнивания давления соседних пор различного размера, образуя открытую структуру; в ней непрерывно происходят согласно закону Стокса движение наиболее крупных пор вверх к поверхности теста и выделение углекислого газа. В процессе образования пор, увеличения объема малыми напряжениями и медленными деформациями сдвига структуры бродящего теста эластифицируется, повышает вязкость и η/Е.

    Бродящее тесто из пшеничной муки I и II сортов отличается от небродящего меньшими величинами модулей сдвига, относительной пластичности (большей эластичностью), большими вязкостью и отношением вязкости к модулю, а также стабильностью и увеличением этих характеристик в процессе брожения после замешивания. Более существенные отличия установлены для теста из муки I сорта, имеющего меньшую на 3-4% влажность, чем тесто из муки II сорта, и иной химический состав.

    Бродящее тесто из ржаной муки обойного и обдирного помолов отличается от небродящего большими величинами модулей сдвига, меньшими вязкостью и отношением вязкости к модулю. Это объясняется влиянием значительной концентрации в нем органических кислот, частично растворяющих набухающие белки и другие полимеры зерна.

    Структурно-механические свойства бродящего пшеничного теста и сырых белков клейковины из муки высшего, I и II сортов, полученных из одного зерна трехсортным помолом, вязкость, а также отношение вязкости к модулю существенно различаются: они определяют газоудерживающую способность теста, объемный выход формового, а также H/D подового хлеба. С понижением сорта муки уменьшается вязкость и отношение вязкости к модулю клейковинных белков и газоудерживание теста, объемный выход хлеба, его пористость и H/D . Наиболее существенные различия указанных характеристик теста, клейковинных белков и хлеба наблюдаются между I и II сортами муки.

    В пределах каждого сорта вязкость бродящего теста оказывает обратное влияние на развитие его объема (газоудерживание), объемный выход хлеба и прямое влияние на H/D хлеба. Отношение вязкости к модулю теста оказывают прямое влияние на оба показателя хлеба. Сорт зерна в ряде случаев оказывает влияние на структурно-механические свойства теста из муки каждого сорта.

    Перечисленные свойства бродящего теста в целях контроля и управления ими целесообразно нормировать и регулировать. В качестве примерных норм для теста из пшеничной муки I сорта, ржаной обойной и обдирной муки можно использовать результаты табл. 4.4.

    ВЛИЯНИЕ ПРОГРЕВА НА МЕХАНИЧЕСКИЕ СВОЙСТВА ТЕСТА. МЕХАНИЧЕСКИЕ СВОЙСТВА ХЛЕБНОГО

    Процесс производства хлебных изделий завершается прогревом массы бродящего теста от 30 до 100°С в условиях больших градиентов тепло- и массопереноса.

    Термическая обработка при выпечке в указанном интервале температуры существенно влияет на активность биохимических процессов, изменяет конформации молекул основных полимеров зерна, их гидрофильные свойства, а также механические свойства теста; в структуре уменьшается содержание свободной воды, тесто теряет способность течения под напряжением сил гравитации массы. Затем пластично-упругая структура теста превращается в упруго-хрупкую пластичную студнеобразную структуру хлебного мякиша. Следует полагать, что его пластичные деформации имеют место в основном при малых скоростях деформации вследствие релаксации напряжений, а при больших скоростях-в результате явлений хрупкости, разрушения сплошности стенок пор концентрированного белково-крахмального студня - мякиша в упругой области. В связи с этим при исследовании механических свойств хлебного мякиша следует ограничиваться возможно малыми величинами его деформаций и их скорости. Вместо деформаций сдвига целесообразно использовать деформации одноосного сжатия пористой пенообразной" структуры мякиша.

    Прогревание усиливает тепловое движение молекул химических соединений. В растворах полимеров оно снижает коэффициент внутреннего трения (вязкость). Обратная зависимость вязкости растворов полимеров от температуры определяется известным эмпирическим уравнением Аррениуса

    где A -постоянная, зависящая от свойств вещества;

    е -основание натурального логарифма;

    Т - абсолютная температура;

    К - газовая постоянная;

    Е - энергия активации (работа, затрачиваемая на перемещение частиц).

    Однако это уравнение справедливо лишь для растворов низкой концентрации и при условии отсутствия существенных изменений формы молекул полимеров. Концентрация основных полимеров зерна - клейковинных белков и крахмала - в хлебном тесте является весьма высокой, а термическая его обработка изменяет форму молекул, а также способность взаимодействия этих основных полимеров зерна с растворителем - водой. Размеры и формы их молекул изменяются также при гидролизе и брожении ферментами зерна и микроорганизмов теста.

    Все указанные процессы могут оказывать влияние на структуру, изменять механические свойства теста. Поэтому следовало ожидать, что применение уравнения Аррениуса для структуры теста допустимо в весьма ограниченной области температуры. Зависимость этих свойств теста от температуры в широких ее пределах является более сложной. Рассмотрим более подробно ее возможное влияние на эти свойства: прогрев теста при выпечке и превращение его в хлебный мякиш протекает в две основные стадии. В начальной стадии прогрева теста до 50-60°С активируются ферментные системы теста, увеличивается содержание в нем водорастворимых соединений, которые могут пластифицировать структуру и одновременно с усилением молекулярно-теплового движения снижать вязкость, усиливать его адгезионные свойства. На этой стадии начинаются также основные процессы выпечки хлеба: клейстеризация крахмала и денатурация белков зерна, которые наиболее активно протекают и заканчиваются во второй, завершающей стадии прогрева теста от 60 до 100°С, когда имеет место также инактивация его ферментных систем.

Приготовление макаронного теста осуществляется непрерывно в два этапа в макаронных прессах непрерывного действия.

На первом этапе проводится смешивание муки, жидких компонентов в тестосмесителях, на втором – уплотнение в шнековой камере пресса.

Дозирование ингредиентов т.е. подача муки и воды в тестосмеситель в необходимом соотношении, соответствующем рецептуре, осуществляется при помощи дозаторов муки и воды, которые, являясь составными частями макаронного пресса, работают синхронно.

Добавки после растворения в воде или приготовления водной эмульсии поступают в тестосмеситель через дозатор воды.

Замес теста. После регулировки дозаторов включают тестосмеситель. Для хорошего промеса корыто тестосмесителя должно быть заполнено тестом примерно на 2/3 объема. После тесто поступает в следующее корыто (в многокорытных прессах), где осуществляется дальнейший промес теста, либо в шнековую камеру (в однокорытных прессах).

Во время замеса теста происходит постепенное набухание крахмальных зерен и белковых комочков муки, а также равномерное распределение влаги по всей массе теста.

Процессы, происходящие при замесе макаронного теста. Замес теста – это сложный процесс смешивания компонентов муки с водой. В результате этого смешивания происходят глубокие физико-химические изменения главных компонентов муки: крахмала и белков.

При приготовлении макаронного теста происходят сложные биохимические, коллоидные, ферментативные и физические процессы. Основную роль при приготовлении макаронного теста играют коллоидные процессы.

Основные компоненты муки белок и крахмал обладают различной водопоглотительной способностью. Взаимодействие воды с крахмалом и белком протекает в два этапа. На первом этапе происходит адсорбционное связывание воды в результате на поверхности мучных частиц образуются тончайшие водяные пленки. Количество воды, связываемой адсорбционно невелико. Процесс смачивания сопровождается выделением тепла. На втором этапе происходит впитывание воды частицами муки. Оно обусловлено наличием внутри белка и крахмала водорастворимых фракций. На этом этапе имеет место поглощение воды под действием осмотического давления (осмотическое связывание влаги).

При температурных условиях получения макаронного теста его крахмальная часть обладает слабой способностью к набуханию.

Крахмальные зерна удерживают влагу в основном своей поверхностью, т.е. адсорбционно. Осмотическое набухание крахмальных зерен начинается при температуре 70 °С и выше, т.е. при температуре которой при нормальных условиях в макаронном тесте не наблюдается.

Клейковина (белок) достигает максимума набухания в интервале температуры от 20 до 30 °С, при более высоких температурах ее набухаемость снижается. Набухание муки при замесе макаронного теста обусловлено в основном гидрационной способностью клейковины.

Клейковина муки мягкой пшеницы набухает быстро, но поглощает меньше воды. А клейковина муки их твердой пшеницы, наоборот, набухает медленно, но поглощает больше воды.

Клейковина в макаронном тесте является основным связующим веществом. Она связывает увлажненные крахмальные зерна и остатки мучных крупок.

Макаронное тесто после замеса представляет собой трехфазную дисперсную систему. Твердой дисперсной фазой являются увлажненные крахмальные зерна и остатки мучных крупок. Дисперсионной средой является пластифицированная клейковина. Третьей газообразной фазой являются включения воздуха, захваченные при замесе.

Эта трехфазная гетерогенная система обладает способностью уплотняться и упрочняться. Степень этого уплотнения зависит от режима замеса.

Режим замеса макаронного теста. Режим замеса макаронного теста характеризуется двумя параметрами: продолжительностью и интенсивностью замеса (частотой вращения месильного органа).

Интенсивный замес приводит к упрочнению структуры макаронного теста за счет более плотной упаковки частиц твердой фазы в дисперсионной среде и повышения адгезионной способности клейковины, которая прочнее склеивает частицы твердой фазы.

Усиление механического воздействия на тесто приводит к увеличению водопоглотительной способности клейковины. В результате возрастает количество сырой клейковины, количество редуцирующих сахаров и водорастворимого азота, т.е. процесс созревания макаронного теста ускоряется.

Чрезмерная механическая обработка вызывает ослабление упруго-вязких свойств макаронного теста из-за частичного разрушения белковой структуры, т.е. механической денатурации клейковины.

Тесто, из макаронной муки (крупки или полукрупки), требует большей продолжительности замеса, чем тесто из хлебопекарной муки, так как проникновение влаги внутрь плотных крупитчатых частиц происходит значительно медленнее, чем внутрь мелких частиц хлебопекарной муки. Продолжительность замеса теста из макаронной муки составляет 20 мин, что обеспечивается трехкорытными тестосмесителями прессов ЛПШ. При замесе теста из крупитчатых продуктов помола твердой пшеницы в однокорытных прессах с продолжительностью замеса 8-9 мин (прессы серии ЛПЛ) влага не успевает равномерно распределиться по всей массе теста, частицы белка не набухают в достаточной степени. В результате при прессовании теста не происходит плотного склеивания крахмальных зерен частицами белка, не происходит создание прочного клейковинного скелета. Выпрессовываемые сырые изделия получаются недостаточно пластичными, на их поверхности видны следы непромеса.

Уплотнение теста. В шнековом цилиндре масса увлажненных тестовых комков и крошек подхватывается лопастями вращающегося шнека и перемещается вдоль цилиндра к матрице. Шнек в этой части выполняет работу транспортирующего механизма, перемещающего сыпучий продукт.

Частицы теста, тесно соприкасаясь друг с другом, постепенно сжимаются. Происходит уплотнение массы, превращение ее в крутое пластичное тесто. Воздух, заполняющий поры и промежутки между частицами теста, вытесняется в сторону загрузочного отверстия шнековой камеры. Давление от нуля повышается 5-12 МПа.

При перемещении спрессованного теста к матрице происходит трение теста о внутреннюю поверхность шнековой камеры и о лопасти шпека, а также интенсивное перетирание слоев теста друг о друга. Это объясняется тем, что через ее отверстия продавливается около 20 % теста, нагнетаемого шнеком к матрице. Остальная масса теста закручивается в предматричной камере, стремясь возвратиться в межвитковое пространство шнека. В результате этого перетирания температура теста повышается на 10-20 °С. Температура теста перед матрицей 55-60 °С. Тесто при такой температуре пластичное, легко скользит через отверстия матрицы. Технологические инструкции предусматривают охлаждение теста путем подачи в водяную рубашку шнековой камеры холодной воды.

Структурно-механические свойства теста

Уплотненное макаронное тесто, поступающее к матрице, является упруго-пластичновязким материалом.

Упругость теста – это способность теста восстанавливать первоначальную форму после быстрого снятия нагрузки, проявляется при малых и кратковременных нагрузках.

Пластичность – это способность теста деформироваться. При длительных и значительных по величине нагрузках (выше так называемого предела упругости) макаронное тесто ведет себя как пластичный материал, т.е. после снятия нагрузки сохраняет приданную ему форму, деформируется. Именно это свойство позволяет формовать из теста сырые макаронные изделия определенного вида.

Вязкость – характеризуется величиной сил сцепления частиц между собой (сил когезии). Чем больше величина сил когезии теста, тем оно более вязкое (прочное), менее пластичное.

Пластичное тесто требует меньше энергии на формование, легче поддается формованию. При использовании металлических матриц из более пластичного теста получаются изделия с более гладкой поверхностью. С повышением пластичности тесто становится менее упругим, менее прочным, более липким, сильнее прилипает к рабочим поверхностям шнековой камеры и шнека, а сырые изделия из такого теста сильнее слипаются между собой, плохо сохраняют форму.

Реологические свойства уплотненного теста, т.е. соотношение его упругих, пластических и прочностных свойств, определяются следующими факторами.

С увеличением влажности теста увеличивается его пластичность и уменьшаются прочность и упругость.

С ростом температуры теста также наблюдается увеличение его пластичности и снижение прочности и упругости. Такая зависимость наблюдается и при температуре большей 62,5 °С, т.е. превышающей температуру клейстеризации пшеничного крахмала. Это объясняется тем, что макаронное тесто имеет недостаточное количество влаги, необходимой для полной клейстеризации крахмала при указанной температуре.

С увеличением содержания клейковины уменьшаются прочностные свойства теста и возрастает его пластичность. Наибольшей вязкостью (прочностью) тесто обладает при содержании в муке около 25 % сырой клейковины. При содержании сырой клейковины ниже 25 % с уменьшением пластических свойств теста уменьшается и его прочность. Липкая, сильно тянущаяся сырая клейковина увеличивает пластичность теста и значительно снижает его упругость и прочность.

С уменьшением размера частиц муки увеличивается прочность и уменьшается пластичность теста из нее: тесто из хлебопекарной муки более прочное, чем из полукрупки, а из полукрупки более прочное, чем из крупки. Оптимальное соотношение прочностных и пластических свойств характерно для частиц исходной муки размером от 250 до 350 мкм.

С увеличением давления прессования увеличивается плотность и прочность теста и уменьшается его пластичность.

Вакуумирование теста

Назначение вакуумирования заключается в удалении газообразной фазы из макаронного теста для улучшения качества макаронных изделий: их внешнего вида, прочностных и варочных свойств.

Для вакуумной обработки одно из корыт тестосмесителя либо часть шнековой камеры герметически закрывается. Вакуум создается с помощью вакуумного насоса. Вакуумирование макаронного теста можно проводить в шнековом макаронном прессе либо на стадии замеса, либо на стадии уплотнения. Первый вариант более предпочтителен, так как из рыхлого крошковатого теста легче удалить воздух.

Эффективность удаления газообразной фазы зависит от следующих факторов:

Режима проведения вакуумирования (остаточное давление в зоне вакуумирования, кПа, продолжительность, мин);

Давления прессования;

Типа муки.

При увеличении длительности вакуумирования, давления прессования или при уменьшении остаточного давления в зоне вакуума содержания воздуха в тесте сокращается. Установлено, что воздухосодержание меньше в тесте из макаронной крупитчатой муки, чем в порошкообразной хлебопекарной. Оптимальным режимом считается режим вакуумирования при остаточном давлении не более 40-10 кПа в течение не менее 7 минут.

При формовании теста после вакуумной обработке, т.е. из которого удалены пузырьки воздуха, прочность сырых изделий повышается в среднем на 40 %, а прочность сухих изделий в среднем на 20 %.

Вакуумированные изделия отличаются гладкой поверхностью более ярким желтым цветом, лучшими прочностными (сокращается доля крошки) и варочными свойствами: количество сухих веществ в варочной воде снижается, изделия более устойчивы к слипанию, лучше сохраняют форму при некотором увеличении длительности варки.

1.4 Формование и разделка полуфабриката

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Реология хлебопекарного, макаронного, кондитерского теста

Реология - наука о деформации и течении различных тел, реологические свойства сырья, полуфабрикатов и готовых изделий.

Слово «реология» от греческого «рео», что означает течение.

Деформация - изменение размеров тела под действием нагрузки.

В отношении твердых тел деформация приводит к изменению формы или размера тела целиком или его части, а в отношении структуры пищевых масс -- к течению (тесто, мука, сгущенное молоко, майонез и т.д.) или даже к их разрыву (конфеты, хлеб и т.д.).

Реологические свойства :

Упругость - свойство тела восстанавливать форму и размеры после снятия нагрузки.

Пластичность - свойство тела сохранять форму и размеры после снятия деформирующей нагрузки.

Вязкость - свойство среды оказывать сопротивление перемещению в ней инородных тел.

Прочность - свойство тела выдерживать определенную внешнюю нагрузку без разрушения.

Твердость - свойство тела сопротивляться внедрению в него других тел.

Хрупкость - свойство тела разрушаться без образования пластических деформаций.

Классификация пищевых продуктов по текстурным признакам и реологическим свойствам

Классификация продуктов

Наименование продуктов

Типичные реологические свойства

Шоколад, печенье, крекеры, вафли, экструдированные продукты, карамель, сухари, сушки, макароны, хлебцы

Предел прочности, модуль упругости

Упруго-пластичные

Хлеб, пшеничное тесто, макаронное тесто, мармелад, зефир, пастила, конфеты, твердый жир, пряники, клейковина, желатин

Предел прочности, модуль упругости, предельное напряжение сдвига, адгезия

Вязко- пластичные

Ржаное тесто, песочное тесто, сметана, майонез, желирующие продукты, полуфабрикаты кондитерского производства

Вязкость, адгезия, предельное напряжение сдвига (пластическая прочность)

Жидкообразные

Дрожжевая суспензия, раствор соли, раствор сахара, растопленный маргарин, цельное молоко, молочная сыворотка

Вязкость, коэффициент поверхностного натяжения

Порошкообразные

Мука, сахар песок, крахмал,

соль поваренная пищевая

Угол естественного откоса, механические характеристики при прессовании

Содержание в муке белковых веществ, их состав, состояние и свойства имеют первостепенное значение и в значительной мере определяют и пищевую ценность хлеба, и технологические свойства муки. От них зависят такие свойства теста, как эластичность, вязкость, упругость. Белковые вещества пшеничной муки представлены на 2/3 (3/4) глиадиновой и глютениновой фракциями(составляющие глютена), которые являются основными компонентами клейковины. Их называют клейковинными белками. В пшеничной муке глиадиновой фракции содержится несколько больше, чем глютениновой.

Чем больше в муке белка, чем плотнее и прочнее его структура, тем сильнее мука, и тем лучше и устойчивее будут реологические свойства теста из нее. Поэтому, чем выше содержание в муке клейковины и чем лучше ее реологические свойства, тем сильнее мука.

Сила муки определяет количество воды, необходимое для получения теста нормальной консистенции, а также изменение реологических свойств теста при брожении и в связи с этим - поведение теста в процессе его механической разделки и тестовых заготовок при окончательной расстойке.

Сила муки обусловливает газоудерживающую способность теста, т.е. способность полуфабрикатов удерживать диоксид углерода, образующийся при брожении. Для получения хлеба максимального объема из очень сильной пшеничной муки реологические свойства теста должны быть несколько ослаблены. Это может быть достигнуто изменением режима приготовления теста: усилением его механической обработки, некоторым повышением температуры, увеличением количества воды в тесте или добавлением препаратов, форсирующих протеолиз в тесте.

Кроме того, сила муки определяет формоудерживающую способность теста, т.е. способность тестовых заготовок удерживать диоксид углерода и сохранять форму в процессе расстойки и первого периода выпечки. В связи с этим сила муки обусловливает расплываемость подового хлеба.

У ржаного хлеба большое значение имеют реологические (структурно-механические) свойства мякиша - степень его липкости, заминаемость и влажность или сухость на ощупь. У ржаного хлеба, особенно из обойной и обдирной муки, по сравнению с пшеничной наблюдается меньший объем, более темно окрашенный мякиш и корка, меньший процент пористости и более липкий мякиш. Отмеченные выше отличия в качестве ржаного хлеба обусловлены специфическими особенностями углеводно-амилазного и белково-протеиназного комплексов зерна ржи и ржаной муки.

Ржаная мука по сравнению с пшеничной отличается большим содержанием собственных сахаров, более низкой температурой клейстеризации (набухание в горячей воде, переход из кристаллического в аморфное состояние) крахмала, большей его атакуемостью и наличием в муке даже из непроросшего зерна практически значимых количеств фермента -амилазы.

Действие амилаз на крахмал ржаной муки, клейстеризующийся при более низкой температуре и более легко атакуемый, может привести к тому, что значительная часть крахмала в процессе брожения теста и выпечки хлеба будет гидролизована. Вследствие этого крахмал при выпечке тестовой заготовки из ржаной муки может оказаться неспособным связать всю влагу теста. Наличие части свободной влаги, не связанной крахмалом, будет делать мякиш хлеба влажноватым на ощупь. Наличие же б-амилазы (альфа-амилазы), особенно при недостаточной кислотности теста, приводит при выпечке хлеба к накоплению значительного количества декстринов, придающих мякишу липкость . Поэтому мякиш ржаного хлеба всегда более липок и влажен по сравнению с мякишем пшеничного хлеба. Кислотность ржаного теста с целью торможения действия б-амилазы приходится поддерживать на уровне значительно более высоком, чем в пшеничном тесте.

К углеводному комплексу ржаной муки относятся и слизи (водорастворимые пентозаны). Содержание пентозанов в ржаной муке значительно превышает содержание их в пшеничной муке. Пентозаны оказывают значительное влияние на реологические свойства ржаного теста, так как, поглощая воду при замесе теста, они делают его более вязким .

Белковые вещества ржаной муки по аминокислотному составу близки к белкам пшеничной муки, однако отличаются более высоким содержанием незаменимых аминокислот - лизина и треонина.

Существенной особенностью белков ржи является их способность к быстрому и интенсивному набуханию. Значительная часть белков при этом набухает неограниченно, переходя в состояние вязкого коллоидного раствора .

Второй особенностью белков ржаной муки является то, что они не способны, несмотря на наличие глиадина и глютенина, к образованию клейковины из-за значительного количества декстринов и водорастворимых пентозанов.

Особенности реологических свойств пшеничного и ржаного теста

Реологические свойства пшеничного теста зависят главным образом от наличия в нем клейковинного каркаса, придающего тесту упругость и эластичность. В ржаном тесте клейковинный каркас отсутствует. Ржаное тесто вязкое, пластичное, эластичные и упругие свойства в нем слабо выражены. Ржаное тесто можно рассматривать как густую жидкость, в которой взвешены набухшие зерна крахмала, ограниченно набухшая, не перешедшая в раствор часть белков, а также частички отрубей.

Формоудерживающая способность ржаного теста зависит от вязкости жидкой фазы. Вязкость жидкой фазы обусловлена пептизированным состоянием части белков, переходом в коллоидный раствор слизей, а также наличием декстринов. Переход белков ржаной муки в тесте в растворимое состояние и набухание нерастворимой части белков зависит от кислотности. Активная кислотность ржаного теста рН 4,2 - 4,4, пшеничного 5,2 - 5,4. Более высокая кислотность тормозит действие альфа-амилазы, снижает температуру ее инактивации. Это ограничивает процесс образования декстринов при выпечке, снижает липкость мякиша, улучшает процесс пептизации белков.

В пшеничном и ржаном тесте различают три фазы: твердую, жидкую и газообразную. Твердая фаза - это зерна крахмала, набухшие нерастворимые белки, целлюлоза и гемицеллюлозы. Жидкая фаза - это вода, которая не связана с крахмалом и белками (около 1/3 части от всей воды, идущей на замес), водорастворимые вещества муки (сахара, водорастворимые белки, минеральные соли), пептизированные белки и слизи. Газообразная фаза - теста представлена частицами воздуха, захваченными тестом при замес е и небольшим количеством диоксида углерода, образовавшегося в результате спиртового брожения. Чем продолжительнее замес теста , тем больший объем в нем приходится на долю газообразной фазы. При нормальной продолжительности замеса объем газообразной фазы достигает 10%, при увеличенной - 20% от общего объема теста .

Соотношение отдельных фаз в тесте обусловливает его реологические свойства. Повышение доли жидкой и газообразной фаз ослабляет тесто , делая его более липким и текучим. Повышение доли твердой фазы укрепляет тесто , делая его более упругим и эластичным.

В ржаном тесте , по сравнению с пшеничным, меньше доля твердой и газообразной, но больше доля жидкой фазы.

Механическое воздействие на тесто на разных стадиях замеса может по разному влиять на его реологические свойства. Вначале замеса механическая обработка вызывает смешивание муки, воды и другого сырья и слипание набухших частиц муки в сплошную массу теста . На этой стадии замеса механическое воздействие на тесто обусловливает и ускоряет его образование. Еще некоторое время после этого воздействие на тесто может улучшать его свойства, способствуя ускорению набухания белков и образованию клейковины. Дальнейшее продолжение замеса может привести не к улучшению, а к ухудшению свойств теста, так как возможно механическое разрушение клейковины. Поэтому знание механизма образования теста, формирования его твердой, жидкой и газообразной фаз необходимо для правильного проведения замеса.

После операции замеса следует брожение теста . В производственной практике брожение охватывает период после замеса теста до его разделки. Основное назначение этой операции - приведение теста в состояние, при котором оно по газообразующей способности и реологическим свойствам, накоплению вкусовых и ароматических веществ будет наилучшим для разделки и выпечки. реология пищевой продукт тесто

Реологические свойства созревшего теста должны быть оптимальными для деления его на куски, округления, окончательного формования, а также для удержания тестом диоксида углерода и сохранения формы изделия при окончательной расстойке и выпечке.

Спиртовое брожение - это основной вид брожения в пшеничном тесте. Вызывается ферментами дрожжевых клеток, которые обеспечивают превращение простейших сахаров (моносахаридов) в этиловый спирт и диоксид углерода.

При брожении теста продолжают интенсивно развиваться процессы ограниченного и неограниченного набухания белков. При ограниченном набухании белков в тесте сокращается количество жидкой фазы, и, следовательно, улучшаются его реологические свойства. При неограниченном набухании и пептизации белков, наоборот, увеличивается переход белков в жидкую фазу теста и ухудшаются его реологические свойства. В тесте из муки различной силы эти процессы происходят с различной интенсивностью.

Чем сильнее мука, тем медленнее протекают в тесте процессы ограниченного набухания белков, достигая оптимума только к концу брожения. В тесте из сильной муки в меньшей степени протекают процессы неограниченного набухания и пептизации белков.

В тесте из слабой муки ограниченное набухание протекает относительно быстро и вследствие малой структурной прочности белка, ослабляемой интенсивным протеолизом, начинается процесс неограниченного набухания белков, переходящий в процесс пептизации и увеличивающий количество жидкой фазы теста. Это приводит к ухудшению реологических свойств теста.

Кондитерское тесто

Использование пшеничной муки разного качества, большого набора сырья, изменение их соотношения и применение определенных технологических параметров и приемов позволяет получать тесто и изделия, различающиеся по физико-химическим и реологическим свойствам.

Реологические свойства теста зависят от степени набухания белков.

В зависимости от этих свойств кондитерское тесто делят на три вида:

пластично - вязкое (сахарное, песочное, сдобное, пряничное тесто), хорошо воспринимает и сохраняет свою форму;

упруго - пластично - вязкое (затяжное, крекерное, галетное), плохо воспринимает и плохо сохраняет форму;

слабоструктурированное (вафельное, бисквитное тесто для бисквитных полуфабрикатов и тортов), имеет жидкую консистенцию.

Пластичное тесто образуется в условиях ограниченного набухания коллоидов муки, поэтому продолжительность замеса теста должна быть минимальной и температура ниже, чем температура теста, обладающего упруго - пластично - вязкими свойствами.

В соответствии с ГОСТ "Кондитерские изделия. Термины и определения" различают два вида теста в зависимости от его структуры:

Бисквитное - сдобное, сахарное, овсяное, из которого получают изделия разнообразной формы с хорошо развитой равномерной пористостью,

Слоистое тесто -для затяжного печенья, крекера, галет, из которого вырабатывают изделия разнообразной формы слоистой структуры.

Реологические свойства теста

Формирование теста с определенными реологическими свойствами связано:

С видом изделий, рецептурой, с правильным подбором сортности муки, с оптимальным содержанием и качеством клейковины, крупноты помола,

С правильным выбором влажности теста,

С правильным выбором и поддержанием технологических параметров замеса теста (температура, продолжительность,интенсивность замеса).

Отмеченные факторы влияют на степень набухания пшеничной муки и тем самым на реологические свойства теста, его пластичность, упругость, эластичность, вязкость.

Повышая температуру теста при замесе, удлиняя продолжительность процесса из сахарного пластичного теста в результате более полного набухания коллоидов можно получить затяжное тесто с упруго-пластично-вязкими свойствами. Пластичность сахарного теста близка к 1.Чтобы можно было затяжное тесто отформовать до заготовок, исключив их деформацию, пластичность его необходимо увеличить до 0.5. С этой целью применяют такую операцию, как вылеживание теста, или используют ферментные препараты протеолитического действия. Для слабоструктурированного вафельного теста из реологических характеристик большое значение имеет вязкость теста, эластичность. От них зависит равномерность распределения теста по поверхности вафельниц, а также хрупкость вафельного листа.

Кондитерское тесто, как и все тестообразные массы, является структурированной дисперсной системой и состоит из трех фаз: твердой, жидкой и газообразной.

Твердую фазу представляют лиофильные коллоиды муки. Это водонерастворимые белковые комплексы и крахмал пшеничной муки.

Жидкая фаза представляет собой многокомпонентный водный раствор веществ, предусмотренных рецептурой теста (инвертный сироп, вода, раствор сахара, патоки, соли, гидрокарбоната натрия, карбоната аммония, молоко и др.).В состав жидкой фазы входят все растворимые в воде органические и минеральные вещества муки.

Соотношение между твердой и жидкой фазами зависит от вида теста, его влажности, количества и качества клейковины.

Газообразную фазу составляет воздух, который захватывается при замесе теста, диспергируется и удерживается в тесте. Кроме того, воздух входит с мукой, водой и другими видами сырья и полуфабрикатов. Газообразная фаза может достигать в тесте 10 %.

Степень разрыхления теста зависит от реологических свойств теста и от равномерного распределения в тесте химических разрыхлителей. Особенно увеличивается пористость и объем заготовок из пластичного теста -сахарного, пряничного. Затяжное и галетное тесто, обладающее значительной упругостью, оказывают сопротивление расширению газовых пузырьков. Эти изделия имеют небольшой подъем и недостаточно развитую пористость.

Макаронное тесто

После замеса макаронное тесто представляет собой сыпучую крошковатую массу, после прохождения шнековой камеры и продавливания сквозь отверстия матрицы - это уплотненное тесто. В таком виде его характеризуют как упруго-пластично-вязкое коллоидное тело.

Технологическая схема шнекового макаронного пресса

Факторы, влияющие на реологические свойства теста

Количество и качество клейковины. Она определяет основные технологические свойства макаронного теста и выполняет две основные функции - 1 пластификатора теста, т.е. выполняет роль смазки, придающей массе крахмальных гранул текучесть и 2 связующего вещества. Т.е. соединяет крахмальные гранулы в единую тестовую массу. Клейковина муки состоит из двух основных фракций: глиадин (растяжимый) и глютенин (упругий). Для макаронного производства большую роль играет глиадин. Именно он определяет текучесть и связанность макаронного теста. Глютенин обуславливает упругость и элластичность сырых изделий. Мягкая, сильно тянущаяся сырая клейковина увеличивает пластичность теста и снижает его упругость и прочность. Наибольшей прочностью обладает тесто из муки с содержанием клейковины около 28 %. С увеличением содержания клейковины уменьшается прочность теста и возрастает пластичность. При содержании клейковины ниже 28 % с уменьшением прочности теста ухудшаются его пластические свойства.

Гранулометрический состав муки. Гранулометрический состав муки оказывает влияние на продолжительность замеса теста и обуславливает ее водопоглотительную способность (ВПС). Мука с мелким размером частиц (хлебопекарная мука) имеет большую ВПС и образует прочное тесто. Мука с крупными частицами (макаронная мука) имеет низкую ВПС и образует более пластичное тесто.

Скоростью проникновения влаги внутрь частиц муки определяется в первую очередь размерами частиц муки. Крупные частицы требуют более длительного вымешивания. При одинаковом размере частиц влага будет медленнее проникать в частицы продуктов помола твердой пшеницы, чем в менее плотные частицы продуктов помола мягкой пшеницы.

Для производства макаронных изделий с размером частиц до 350мкм и тем более до 500мкм необходимо использовать многокорытные прессы, продолжительность замеса в которых составляет 16…20мин. При работе на прессах с продолжительностью замеса 8…10мин целесообразно использовать муку с размерами частиц не более 200-250мкм (полукрупку или хлебопекарную муку).

С увеличением времени замеса теста прочность полуфабрикатов макаронных изделий возрастает и достигает своего максимального значения, а затем начинает снижаться.

Интенсивность (продолжительность) замеса. С увеличением времени замеса снижается прочность теста и возрастает его пластичность. Продолжительность замеса теста зависит от двух факторов:

Достижения равномерного распределения воды по всей массе теста,

Скоростью проникновения влаги внутрь частиц.

Для достижения равномерного распределения воды по всей массе теста воду в месильное корыто подают в распыленном виде для быстрого и более равномерного распределения по всей тестовой массе.

Другой способ ускорения равномерного распределения влаги - интенсификация смешивания муки и воды. Для этого используют многокорытные прессы, в которых тестомесильный вал первого корыта вращается с большей частотой, чем валы последующих корыт. В современных прессах фирмы “Паван” муку и влагу предварительно смешивают в центробежном мукоувлажнителе “Турбоспрей”, где частицы муки и вода в заданном соотношении быстро и равномерно увлажняются и поступают в корыто тестосмесителя.

Влажность . С увеличением влажности теста возрастает его пластичность и уменьшаются прочность и упругость.

Влажность макаронного теста - первый технологический параметр, с помощью которого технолог может менять в определенных пределах, оказывать влияние на физические свойства теста, полуфабрикат макаронных изделий и качество продукции.

С повышением влажности теста до 32% увеличивается пластичность, текучесть теста и облегчается процесс его выпрессовывания через матрицы. Это приводит к снижению давления прессования и к увеличению скорости выпрессовывания, т.е. к повышению производительности пресса.

При более высокой влажности (более 32%) образуются комки, которые не проходят сквозь входное отверстие шнековой камеры, понижается прочность выпрессовываемых изделий и снижается давление прессования.

Увеличение влажности теста приводит к увеличению толщины сольватных оболочек, которые окружают частицы муки в уплотненном тесте. В связи с этим снижается вязкость теста и прочность полуфабрикатов изделий, увеличивается их пластичность.

Температура С ростом температуры теста примерно до 75 о С увеличивается его пластичность и снижается прочность и упругость.

Температура макаронного теста - второй технологический параметр, с помощью которого технолог может оперировать в процессе замеса теста.

Традиционный режим замеса и формования макаронного теста предусматривает повышение температуры теста перед матрицей до 50…55 0 С, при увеличении температуры выше 60 0 С структура теста не фиксируется - происходит денатурация белков, потери связующих веществ клейковины, ослабление структуры изделий, что приводит к снижению прочности изделий, увеличению потери сухих веществ во время варки изделий

Механизм образования структур. Виды структур. Показатели реологических свойств. Эффективная вязкость, пластическая вязкость, текучесть. Аномалия вязкости. Тиксотропное восстановление

Дисперсные системы, к которым относятся шоколадные полуфабрикаты и пралиновые массы, обладают структурами в результате взаимодействия между дисперсными частицами твердой фазы. По характеру связей в них образуются коагуляционные структуры. Коагуляционные структуры образованы твердыми частицами в жидкой дисперсионной среде и характеризуются сравнительно слабыми по силе взаимодействия контактами между частицами.

Различают коагуляционные структуры компактные и рыхлые.

Рыхлые дисперсные коагуляционные структуры возникают при малых объемных концентрациях дисперсной фазы (даже при концентрации менее 1 %), если дисперсность достаточно высокая и частицы анизометричны. В шоколадных массах дисперсная фаза составляет около 65%, а размер частиц в основной массе составляет 16-35 мкм. Среди частиц твердой фазы находятся частички клеточных оболочек, частички какаовеллы, имеющие форму пластинок, палочек, т.е.удлиненную форму. Сцепление частиц происходит по углам, ребрам и другим неровностям, на участках наибольшей концентрации свободных молекулярных сил. Это объясняется тем, что в этих местах утоньшаются адсорбционно-сольватные оболочки дисперсионной среды. В этих системах дисперсионная среда удерживается внутри структуры, а вся система теряет легкоподвижность и со временем не расслаивается.

Какао тертое содержит меньше дисперсной фазы - около 45%. Поэтому образующаяся рыхлая коагуляционная структура имеет меньшую прочность, которая не в состоянии препятствовать расслаиванию. Под влиянием механического воздействия происходит разрушение структуры какао тертого и шоколадных масс. Но после предварительного механического разрушения такие структуры самопроизвольно восстанавливаются во времени. Это явление называется тиксотропией , заключается в восстановлении связей между частицами после механического разрушения в результате благоприятного соударения частиц, находящихся в броуновском движении. Связано это с наличием тонких пластифицирующих прослоек между частицами.

Компактные коагуляционные структуры возникают в шоколадных массах после вальцевания. Вследствие большого обьема дисперсной фазы-75-73% и соответственно малого содержания дисперсионной среды частицы связаны друг с другом прямыми точечными (атомными) контактами. Такие дисперсные системы не обладают тиксотропными свойствами.

В шоколадных массах, прошедших все стадии технологической обработки образуются коагуляционные структуры двух типов:

1.коагуляционные структуры из микрокристалликов сахара, соединенных через тончайшие пленки воды. Содержание сахара в шоколадных массах превышает 50% и его участие в структурообразовании значительно,

2.коагуляционные структуры из микрочастиц клеточных тканей какао бобов, соединенных через прослойки жира.

Вполне вероятно образование смешанных структур.

При охлаждении шоколадных масс после формования в результате кристаллизации какао масла коагуляционные структуры с точечными контактами превращаются в конденсационно-кристаллизационные. Главными признаками таких структур является высокая по сравнению с коагуляционными структурами прочность, определяемая высокой прочностью самих фазовых (непосредственных) контактов между частицами, необратимый характер разрушения, т.е.отсутствие тиксотропного восстановления структуры, большая хрупкость из-за жесткости контактов.

Размещено на Allbest.ru

...

Подобные документы

    Основные понятия, определения и задачи инженерной реологии. Механические модели, отражающие элементарные реологические свойства биохимических, биофизических, физико-химических и органолептических показателей пищевых продуктов; реометры, вискозиметры.

    презентация , добавлен 06.06.2014

    Классификация и ассортимент хлеба ржаного и ржано–пшеничного. Органолептическая оценка качества хлеба. Исследование пористости, влажности мякиша, кислотности ржаного хлеба. Химический состав и пищевая ценность. Основные компоненты любого теста.

    презентация , добавлен 12.11.2014

    Изготовление слоеного теста. Реологические свойства сырья. Хлебопекарные свойства пшеничной муки. Дрожжи хлебопекарные и их виды. Соль поваренная пищевая, ее классификация. Жиры для кулинарии. Органолептические свойства маргарина. Яйца и яичные продукты.

    доклад , добавлен 31.01.2009

    Исследование влияния дозировки соевого обогатителя на реологические свойства теста для пряников, приготовленных на основе биоактивированного зерна пшеницы. Расчет дозировки пищевого соевого обогатителя для обеспечения оптимальных вязкостных свойств теста.

    статья , добавлен 22.08.2013

    Склады и подготовительные отделения. Тестоприготовительное и тесторазделочное отделения хлебопекарного производства. Производственная и цеховая лаборатории. Традиционные способы приготовления пшеничного и ржаного теста на больших густых опарах, заквасках.

    отчет по практике , добавлен 15.11.2012

    Рецептура и дозирование пшеничного теста. Его замес, образование, разрыхление и брожение. Нормы загрузки бродильных емкостей мукой. Дозирование сырья в хлебопекарном производстве. Традиционные способы приготовления пшеничного теста: опарный и безопарный.

    курсовая работа , добавлен 16.02.2016

    Особенности разработки проекта кондитерского цеха мощностью 10 тысяч изделий в сутки. Анализ этапов расчета сырья и пищевых продуктов. Рассмотрение проблем подбора механического оборудования. Характеристика производственной программы кондитерского цеха.

    дипломная работа , добавлен 01.02.2015

    Классификация и ассортимент изделий из воздушного теста. Товароведная характеристика основного и вспомогательного сырья, используемого при производстве изделия. Организация работы кондитерского цеха, технологического оборудования и труда работников.

    курсовая работа , добавлен 19.04.2015

    Влияние жировых продуктов на свойства теста и хлеба, их пищевую и потребительскую ценность. Сахар как компонент теста. Технико-экономическое значение упека, факторы, влияющие на его величину. Производственная рецептура хлеба, схема приготовления теста.

    контрольная работа , добавлен 05.02.2014

    Фитокомпозиции, их функций, перечень растительного сырья для обогащения кондитерского и хлебопекарного производства. История возникновения фитокомпозиций, их лечебные и побочные действия. Специализированный хлеб с фитокомпозицией для спортсменов.