Ремонт Стены Уход

Тепловые процессы в химическом процессе. Процессы и аппараты в химической технологии

РАЗДЕЛ 5 ТЕПЛОВЫЕ ПРОЦЕССЫ И АППАРАТЫ ХИМИЧЕСКОЙ ТЕХНОЛОГИИ

Понятие тепловых процессов

Тепловыми называются процессы, предназначенные для передачи тепла от одного тела к другому.

Тела, участвующие в тепловом процессе, называются теплоносителями .

Теплоноситель, который отдает тепло и при этом охлаждается, называется горячим . Теплоноситель, который принимает тепло и при этом нагревается, называется холодным .

Движущей силой теплового процесса является разность температур между теплоносителями.

Основы теории передачи тепла

Различают три принципиально отличающиеся способа переноса тепла

Теплопроводность;

Конвекция;

Излучение.

Теплопроводность – перенос тепла, обусловленный тепловым движением микрочастиц, непосредственно соприкасающихся друг с другом. Это может быть движение свободных электронов в металле, движение молекул в капельных жидкостях и газах, колебания ионов в кристаллической решетке твердых тел.

Величину теплового потока , возникающего в теле вследствие теплопроводности при некоторой разности температур в отдельных точках тела, можно определить по уравнению Фурье

, Вт. (5.1)

Закон Фурье читается следующим образом:

количество тепла, передаваемое в единицу времени, путем теплопроводности через поверхность F, прямо пропорционально величине поверхности и градиенту температуры .

В уравнении (5.1) - коэффициент теплопроводности , размерность которого

Коэффициент теплопроводности показывает количество теплоты, проходящей вследствие теплопроводности в единицу времени через единицу поверхности теплообмена при изменении температуры на один градус на единице длины нормали к изотермической поверхности.

Коэффициент теплопроводности характеризует способность тела проводить теплоту и зависит от природы вещества, структуры, температуры и других факторов.

Наибольшее значение имеют металлы, наименьшее – газы. Жидкости занимают промежуточное положение между металлами и газами. В расчетах значение коэффициента теплопроводности определяется при средней температуре тела по справочной литературе.

Конвекция – перенос тепла, обусловленный движением и перемешиванием макроколичеств газа и жидкости.

Различают свободную (или естественную) и вынужденную конвекцию.

Свободная (естественная) конвекция обусловлена движением макроколичеств газа или жидкости вследствие разности плотностей в разных точках потока, имеющих различную температуру.

При вынужденной (принудительной) конвекции движение потока газа или жидкости происходит вследствие затраты энергии извне с помощью газодувки, насоса, мешалки и т.п.

Уравнение Ньютона позволяет количественно описать конвективный теплообмен

В соответствии с законом Ньютона:

количество тепла в единицу времени, передаваемое из ядра потока, имеющего температуру к стенке поверхностью F, имеющую температуру , (или наоборот) прямо пропорционально величине поверхности и разности температур.

В уравнении Ньютона (5.2) коэффициент пропорциональности называется коэффициентом теплоотдачи , а уравнение (5.2) – уравнением теплоотдачи .

Размерность коэффициента теплоотдачи

.

Коэффициент теплоотдачи показывает количество теплоты, отдается от теплоносителя к 1 м поверхности стенки (или от стенки поверхностью 1 м к теплоносителю) в единицу времени при разности температур между теплоносителем и стенкой 1 градус.

Коэффициент теплоотдачи характеризует скорость переноса теплоты в теплоносителе и зависит от многих факторов: гидродинамического режима движения и физических свойств теплоносителя (вязкость, плотность, теплопроводность и т.д.), геометрических параметров каналов (диаметр, длина), состояния поверхности стенок (шероховатая, гладкая).

Коэффициент можно определить экспериментальным путем либо расчетным по обобщенному критериальному уравнению, которое можно получить путем подобного преобразования дифференциального уравнения конвективного теплообмена.

Критериальное уравнение теплоотдачи для неустановившегося процесса имеет вид:

В уравнении (5.3)

Критерий Нуссельта. Характеризует отношение переноса теплоты конвекцией к теплоте, передаваемой теплопроводностью ( - определяющий геометрический размер; для потока, движущегося в трубе - диаметр трубы);

- критерий Рейнольдса;

Критерий Прандтля. Характеризует подобие физических свойств теплоносителей (здесь - удельная теплоемкость теплоносителя, ). Для газов 1; для жидкостей 10…100;

Критерий Фруда (мера отношения сил инерции в потоке к силе тяжести);

Критерий гомохронности (мера отношения пути, пройденного потоком со скоростью за время , к характерному размеру l )

Для установившегося процесса теплообмена ( =0) критериальное уравнение теплоотдачи имеет вид

. (5.4)

При вынужденной теплоотдаче (например, при напорном движении теплоносителя по трубам) влиянием силы тяжести можно пренебречь ( =0). Тогда

. (5.5)

или в виде степенной зависимости

, (5.6)

где - определяются экспериментальным путем.

Так, для вынужденного движения теплоносителя внутри труб уравнение (5.6) имеет вид

- при турбулентном режиме ()

. (5.7)

В случае значительного изменения физических свойств теплоносителей в процессе теплообмена используется уравнение

, (5.8)

где - критерий Прандтля теплоносителя, физические свойства которого определяются при температуре ;

- при переходном режиме ()

- при ламинарном режиме ()

, (5.10)

где - критерий Грасгофа, учитывающий влияние на теплоотдачу свободной конвекции;

Коэффициент объемного расширения, град ;

Разность между температурами стенки и теплоносителя.

Схема расчета коэффициента теплоотдачи

Определяется гидродинамический режим движения теплоносителя (Re);

Выбирается расчетное уравнение для определения критерия Нуссельта (уравнения 5.7-5.10);

Определяется коэффициент теплоотдачипо формуле

Тепловое излучение – процесс распространения электромагнитных колебаний различной длиной волны, обусловленных тепловым движением атомов или молекул излучающего тела.

Основное уравнение теплопередачи

Процесс переноса теплоты от горячего теплоносителя к холодному через разделяющую их стенку называется теплопередачей .

Связь между тепловым потоком и поверхностью теплопередачи F можно описать кинетическим уравнением, которое называется основным уравнением теплопередачи и для установившегося теплового процесса имеет вид

, (5.12)

где - тепловой поток (тепловая нагрузка), Вт;

Средняя движущая сила или средняя разность температур между теплоносителями (средний температурный напор);

Коэффициент теплопередачи, характеризующий скорость передачи теплоты.

Коэффициент теплопередачи имеет размерность , и показывает количество теплоты, передаваемой в единицу времени через поверхность 1м от горячего теплоносителя к холодному при разности температур 1 градус.

Для плоской стенки коэффициент теплопередачи можно определить по уравнению

, (5.13)

где - коэффициенты теплоотдачи соответственно со стороны горячего и холодного теплоносителей, ;

Толщина стенки, м,

Коэффициент теплопроводности материала стенки, .

Схема теплопередачи через плоскую стенку приведена на рисунке 5.1.

Выражение (5.13) называют уравнением аддитивности термических сопротивлений; причем частные сопротивления могут сильно различаться.

В теплообменных аппаратах кожухотрубчатого типа применяются трубки, толщина стенок которых составляет 2,0…2,5 мм. Поэтому величину термического сопротивления стенки () можно считать пренебрежимо малой. Тогда и после несложных преобразований можно записать .

Если принять, что значение коэффициента теплоотдачи со стороны горячего теплоносителя значительно превышает значение коэффициента теплоотдачи со стороны холодного теплоносителя (т.е. ), то из последнего выражения имеем

т.е. коэффициент теплопередачи численно равен меньшему из коэффициентов теплоотдачи. В реальных условиях коэффициент теплопередачи ниже меньшего из коэффициентов теплоотдачи, а именно

Из последнего выражения следует практический вывод: для интенсификации теплового процесса необходимо увеличивать меньший из коэффициентов теплоотдачи (например, путем увеличения скорости теплоносителя).

Движущая сила теплового процесса или температурный напор зависит от направления движения теплоносителей. В непрерывных процессах теплообмена различают следующие схемы относительного движения теплоносителей:

- прямоток , при котором теплоносители движутся в одном направлении (рисунок 5.2.а);

- противоток , при котором теплоносители движутся в противоположных направлениях (рисунок 5.2б);

- перекрестный ток , при котором теплоносители движутся по отношению друг к другу во взаимно перпендикулярном направлении (рисунок 5.2в);

- смешанный ток , при котором один теплоноситель в одном направлении, а другой попеременно как прямотоком (рисунок 5.2г), так и противотоком (рисунок 5.2д).

Рассмотрим расчет средней движущей силы для установившегося процесса теплопередачи, т.е. температура в каждой точке теплопередающей стенки остается постоянной во времени, но изменяется вдоль ее поверхности. Примерное изменение температуры вдоль поверхности стенки при прямоточном (а) и противоточном (б) движении теплоносителей приведено на рисунке 5.3.

Температура на входе и выходе для горячих теплоносителей.

Температура на входе и выходе для холодных теплоносителей.

а-прямоток; б-противоток

Рисунок 5.3 - К расчету средней движущей силы

Из рисунка 5.3 видно, что при противотоке теплоносителей величина температурного напора вдоль поверхности теплообмена более постоянна, поэтому условия нагрева или охлаждения сред более “мягкие”. При этом холодный теплоноситель можно нагреть до более высокой температуры, чем температура горячего теплоносителя на выходе из теплообменного аппарата (), что исключено в случае прямоточной схемы движения. Поэтому (при одинаковых значениях температур) расход холодного теплоносителя снижается на 10…15%. Кроме того, процесс теплообмена протекает более интенсивно.

Поправочный коэффициент, значение которого всегда меньше единицы и определяется в зависимости от соотношения температур теплоносителей и схемы их движения.

Введение

Любая технология, в том числе и химическая, - это наука о методах переработки сырья в готовую продукцию. Методы переработки должны быть экономически и экологически выгодными и обоснованными.

Химическая технология возникла в конце 18 века и почти до 30-х годов 20 века состояла из описания отдельных химических производств, их основного оборудования, материальных и энергетических балансов. По мере развития химической промышленности и возрастания числа химических производств возникла необходимость изучения и установления общих закономерностей построения оптимальных химико-технологических процессов, их промышленной реализации и рациональной эксплуатации. В химической технологии необходимо четко выделять потоки веществ, с которыми происходит трансформация, сначала от сырья, затем постадийно образующимися промежуточными продуктами до получения конечного целевого продукта.

Основная задача химической технологии -- сочетание в единой технологической системе разнообразных химически превращений с физико-химическими и механическими процессами: измельчением и сортировкой твёрдых материалов, образованием и разделением гетерогенных систем, массообменном и теплообменом, фазовыми превращениями, и т.д.

Механические процессы занимают одно из главных мест на производстве, так как участвуют на каждой его стадии. В данной работе особое место отведено самому распространенному процессу - механическому перемешиванию. В зависимости от условий проведения процесса на производстве применяют емкости и аппараты с перемешивающими устройствами (мешалками) различных конструкций.

Главными целями работы являются подробное изучение основных механических процессов, перемешивающих устройств, их эксплуатация и технологическое назначение.

Механические процессы химической технологии

К механическим относят процессы, основу которых составляет механическое воздействие на продукт, а именно:

Сортирование

Различают два вида разделения продукта: сортирование ни качеству в зависимости от органолептических свойств (цвет, состояние поверхности, консистенция) и разделение по величине на отдельные фракции (сортирование по крупицам и форме).

В первом случае операцию производят путем органолептического осмотра продуктов, во втором -- путем просеивания.

Сортирование путем просеивания применяют для удаления посторонних примесей. При просеивании через отверстия проходят частицы продукта, размеры которых меньше отверстий сит (проход), а на сите в виде отходов остаются частицы с размерами, превышающими размеры отверстий сит.

Для просеивания применяют: металлические сита со штампованными отверстиями; проволочные из круглой металлической проволоки, а также сита из шелковых, капроновых нитей и других материалов.

Сита из шелка обладают высокой гигроскопичностью и имеют сравнительно быструю изнашиваемость. Капроновые малочувствительны к изменению температуры, относительной влажности воздуха и просеиваемых продуктов; прочность капроновых нитей выше шелковых.

Измельчение

Измельчением называют процесс механического деления обрабатываемого продукта на части с целью лучшего его технологического использования. В зависимости от вида сырья и его структурно-механических свойств используют в основном два способа измельчения: дробление и резание. Дроблению подвергают продукты с незначительной влажностью, резанию -- продукты, обладающие высокой влажностью.

Дробление с целью получения крупного, среднего и мелкого измельчения производят на размолочных машинах, тонкое и коллоидное -- на специальных кавитационных и коллоидных мельницах.

В процессе резания осуществляют разделение продукта па части определенной или произвольной формы (куски, пласты, кубики, брусочки и др.), а также приготовление мелкоизмельченных видов продуктов.

Для измельчения твердых продуктов, обладающих высокой механической прочностью применяют ленточные и дисковые пилы, куттеры.

Прессование

Процессы прессования продуктов применяют в основном для разделения их на две фракции: жидкую и плотную. В процессе прессования разрушается структура продукта. Осуществляют прессование с помощью шнековых прессов непрерывного действия (экстракторы различных конструкций).

Перемешивание

Перемешивание способствует интенсификации тепловых биохимических и химических процессов вследствие увеличения поверхностного взаимодействия между частицами смеси. От продолжительности перемешивания смесей зависят их консистенция и физические свойства.

Дозирование и формирование

Производство продукции предприятий и ее отпуск осуществляются в соответствии с ГОСТами или ТУ или внутренними технологическими каратами и сборниками рецептур, с нормами закладки сырья и выхода готовой продукции (масса, объем). В связи с этим существенное значение имеют процессы деления продукта на порции (дозирование) и придания им определенной формы (формование). Процессы дозирования и формования осуществляются вручную или с помощью машин в зависимости от производства.

Химико тех процессы в зависимости от кинетических закономерностей характеризующих их протекание, делятся на пять групп:

1. Механические

2. Гидромеханические

3. Тепловые процессы

4. Массообменные процессы

5. Химические процессы

По организации производства делятся на периодические и непрерывные.

Для периодичного процессов характерно единство места всех стадий протекания процесса, в них операция загрузки сырья, проведения процесса и выгрузки сырья осуществляется в одном аппарате.

Для непрерывных процессов характерно единство времени протекания всех стадий процесса, т.е. все стадии протекают одновременно, но в разных аппаратах.

Характеристикой периодичности процесса служит степень непрерывности Хn =тао\дельта тао.

тао - Продолжительность процесса, то есть время необходимое для завершения всех стадий процесса, начиная от загрузки сырья до выгрузки готовой продукции.

Дельта тао - период процесса, время протекающее от начала загрузки сырья, до загрузки следующей партии сырья.

Механические процессы:

1. Измельчение твердых материалов

2. Смешивание

3. Транспортировка сыпучих материалов

Гидромеханические процессы эти процессы используются в химической технологии, протекают в дисперсных системах, состоящих из дисперсионной среды и дисперсной фазы. По агрегатному состоянию дисперсной среды дел на газовой(туманы, пыль) и жидкой(эмульсия, пена) фазой.

Тепловые процессы химическое производство требует больших затрат тепловой энергии, для подвода и отвода тепла используются тепловые процессы: нагревание, охлаждение, испарение, конденсация и выпаривание.

Массообменные процессы - это процессы характеризующие переносы вещества между фазами, движущей силой является разность концентрации вещества между фазами. Относятся процессы:

1. Адсорбция – это процесс поглощения газов или паров твердым поглотителями или поверхностным слоем жидких поглотителей.

2. Абсорбция – процесс поглощения газов или паров жидкими поглотителями

3. Десорбция – обратный процесс от абсорбции

4. Ректификация – процесс разделения жидких однородных смесей на составляющие их компоненты.

5. Экстракция – процесс извлечения одного или нескольких растворенных веществ из одной жидкой фазы другой фазой.

6. Сушка – процесс удаления летучего компонента из твердых материалов, путем его испарения и отвода образующегося пара.

Химические процессы – процессы представляющие собой одну или н6есколько хим реакций, сопровождающ явл тепло и массо обмена.

Химические реакции:

По фазовому состоянию: гомо и гетере генные

По механизму взаимодействия реагентов: гомолитические и гетеролитические

По тепловому эффекту: экзотермические и эндотермические

По температуре: низко температурные, высоко температурные

По виду реакции: сложные и простые

По использованию катализатора: каталитические и некаталитические

К РАЗДЕЛУ «ТЕПЛОВЫЕ ПРОЦЕССЫ»

Программа раздела

Роль тепловых процессов в химической технологии.

Промышленные способы подвода и отвода тепла. Виды теплоносителей и области их применения. Нагревание водяным паром. Особенности использования насыщенного пара в качестве греющего агента, основные достоинства и области применения. Тепловые балансы при нагревании «острым» и «глухим» паром. Нагревание горячими жидкостями, достоинства и недостатки. Нагревание топочными газами. Нагревание электрическим током. Охлаждающие агенты.

Теплообменные аппараты. Классификация теплообменных аппаратов. Кожухотрубчатые теплообменники: конструкция, сравнительные характеристики. Змеевиковые теплообменники: достоинства и недостатки. Теплообменники с плоской поверхностью: конструкции, достоинства и недостатки. Смесительные теплообменники: конструкции, достоинства и недостатки. Регенеративные теплообменники: конструкции, достоинства и недостатки.

Расчет поверхностных теплообменников . Выбор теплообменных аппаратов. Проектные расчет теплообменников. Проверочный расчет теплообменников. Выбор оптимального режима теплообменных аппаратов.

Выпаривание . Назначение процесса. Классификация выпарных процессов и аппаратов. Однократное выпаривание: принцип действия, достоинства и недостатки. Многократное выпаривание: принцип действия, достоинства и недостатки. Выпаривание с тепловым насосом.

Выпарные аппараты . Классификация выпарных аппаратов. Выпарные аппараты с принудительной циркуляцией: конструкции, достоинства и недостатки. Пленочные выпарные аппараты: конструкции, достоинства и недостатки.

Выбор выпарных аппаратов . Расчет непрерывно действующей выпарной установки. Пути повышения экономичности выпарных установок.


ВАРИАНТЫ РАСЧЕТНОГО ЗАДАНИЯ

Задача 1

Определить необходимую поверхность теплообмена и длину труб кожухотрубчатого теплообменника с числом ходов , для осуществления процесса при массовом расходе А в трубном пространстве . Температура теплоносителя в подогревателе и холодильнике изменяется от до при среднем давлении . В испарителе и конденсаторе температура теплоносителя равна температуре кипения или конденсации при давлении .

В межтрубное пространство подается теплоноситель . Его температура меняется от до , в испарителе и конденсаторе его температура равна температуре конденсации или кипения при давлении .

Общее число труб в теплообменнике , диаметр труб равен 25x2,5 мм, диаметр кожуха . Необходимо также определить гидравлическое сопротивление аппарата, изобразить график изменения температур теплоносителей, схему кожухотрубчатого теплообменника. Исходные данные для решения задачи предоставлены в таблице 2.1.



Таблица 2.1

Последняя цифра зачетки Теплоноситель Тип теплообменника Параметры теплоносителя Предпоследняя цифра зачетки Расход теплоносителя , кг/с Характеристика теплообменника
, 0 С , 0 С , МПа , 0 С , 0 С , МПа
Число труб, Число ходов, Диаметр кожуха , мм
Вода/дифенил холодильник - - 2,3 2,0
Вода/водяной пар испаритель - - 1,0 - - 2,6 4,6 0,8
Ацетон/вода нагреватель - - 1,3
Хлорбензол/вода конденсатор - - 0,6 - 7,8 0,6
Вода/толуол холодильник - - 3,4 1,0
Метиловый спирт/вода нагреватель - - 6,4 1,4
Нафталин/водяной пар испаритель - - 0,4 - - 1,5 5,1 0,4
Аммиак/вода конденсатор - - 0,27 - 9,3 1,2
Этиловый спирт/вода холодильник - - 3,7 0,6
Четыреххлористый углерод/вода нагреватель - - 5,8 1,0