Ремонт Стены Уход

Химические свойства солей уравнения реакций. Соли: виды, свойства и применение

Когда слышишь слово "соль", то первая ассоциация, конечно же, поваренная, без которой любое блюдо покажется невкусным. Но ведь это не единственное вещество, которое относится к классу химических веществ соли. Примеры, состав и химические свойства солей вы сможете найти в этой статье, а также научитесь правильно составлять название любой из них. Прежде чем продолжить, давайте договоримся, в этой статье мы рассмотрим только неорганические средние соли (полученные при реакции неорганических кислот с полным замещением водорода).

Определение и химический состав

Одно из определений соли звучит так:

  • (т. е. состоящее из двух частей), в состав которого входят ионы металлов и кислотный остаток. То есть это вещество, получившееся в результате реакции кислоты и гидроксида (оксида) любого металла.

Есть еще одно определение:

  • Это соединение, представляющее собой продукт полного или частичного замещения ионов водорода кислоты ионами металла (подходит для средних, основных и кислых).

Оба определение правильные, но не отражают всю суть процесса получения соли.

Классификация солей

Рассматривая различных представителей класса солей, можно заметить, что они бывают:

  • Кислородсодержащими (соли серной, азотной, кремниевой и других кислот, в состав кислотного остатка которых входит кислород и еще один неметалл).
  • Бескислородными, т. е. соли, образованные при реакции остаток которой не содержит кислород, — соляная, бромоводородная, сероводородная и другие.

По количеству замещенных водородов:

  • Одноосновные: соляная, азотная, иодоводородная и другие. В состав кислоты входит один ион водорода.
  • Двухосновные: два иона водорода замещены ионами металлов при образовании соли. Примеры: серная, сернистая, сероводородная и другие.
  • Трехосновные: в составе кислоты три иона водорода замещены металлическими ионами: фосфорная.

Есть и другие типы классификаций по составу и свойствам, но мы не станем их разбирать, так как цель статьи немного другая.

Учимся называть правильно

У любого вещества есть название, которое понятно только жителям определенного региона, его еще называют тривиальным. Поваренная соль — пример разговорного названия, по международной номенклатуре оно будет называться уже по-другому. Но в разговоре абсолютно любой человек, знакомый с номенклатурой названий, без проблем поймет, что речь идет о веществе с химической формулой NaCl. Эта соль является производной от соляной кислоты, а соли ее называют хлоридами, то есть называется она хлорид натрия. Нужно просто выучить названия солей, приведенных ниже в таблице, а затем добавить название металла, образовавшего соль.

Но так просто составляется название, если у металла неизменная валентность. А теперь рассмотрим с названием), у которой металл с переменной валентностью — FeCl 3. Вещество называется хлорид железа трехвалентного. Именно такое название правильное!

Формула кислоты Название кислоты

Кислотный остаток (формула)

Номенклатурное название Пример и тривиальное название
HCl соляная Cl - хлорид NaCl (поваренная соль, каменная соль)
HI иодоводородная I - иодид NaI
HF фтороводородная F - фторид NaF
HBr бромоводородная Br - бромид NaBr
H 2 SO 3 сернистая SO 3 2- сульфит Na 2 SO 3
H 2 SO 4 серная SO 4 2- сульфат CaSO 4 (ангидрит)
HClO хлорноватистая ClO - гипохлорит NaClO
HClO 2 хлористая ClO 2 - хлорит NaClO 2
HClO 3 хлорноватая ClO 3 - хлорат NaClO 3
HClO 4 хлорная ClO 4 - перхлорат NaClO 4
H 2 CO 3 угольная CO 3 2- карбонат CaCO 3 (известняк, мел, мрамор)
HNO 3 азотная NO 3 - нитрат AgNO 3 (ляпис)
HNO 2 азотистая NO 2 - нитрит KNO 2
H 3 PO 4 фосфорная PO 4 3- фосфат AlPO 4
H 2 SiO 3 кремниевая SiO 3 2- силикат Na 2 SiO 3 (жидкое стекло)
HMnO 4 марганцовая MnO 4 - перманганат KMnO 4 (марганцовка)
H 2 CrO 4 хромовая CrO 4 2- хромат CaCrO 4
H 2 S сероводородная S- сульфид HgS (киноварь)

Химические свойства

Как класс, соли по своим химическим свойствам характеризуются тем, что могут взаимодействовать со щелочами, кислотами, солями и более активными металлами:

1. При взаимодействии со щелочами в растворе обязательным условием реакции является выпадение в осадок одного из получаемых веществ.

2. При взаимодействии с кислотами реакция проходит, если образуется летучая кислота, нерастворимая кислота или нерастворимая соль. Примеры:

  • К летучим кислотам относится угольная, так как она легко распадается на воду и углекислый газ: MgCO 3 + 2HCl = MgCl 2 + H 2 O + CO 2.
  • Нерастворимая кислота — кремниевая, образуется в результате реакции силиката с другой кислотой.
  • Одним из признаков химической реакции является выпадение осадка. Какие соли можно посмотреть в таблице растворимости.

3. Взаимодействие солей между собой происходит только в случае связывания ионов, т. е. одна из образовавшихся солей выпадает в осадок.

4. Чтобы определить, пойдет ли реакция между металлом и солью, нужно обратиться к таблице напряжения металлов (иногда ее еще называют рядом активности).

Только более активные металлы (расположенные левее) могут вытеснять из соли металл. Примером является реакция железного гвоздя с медным купоросом:

CuSO 4 + Fe= Cu + FeSO 4

Такие реакции свойственны большинству представителей класса солей. Но есть и более специфические реакции в химии, свойства соли индивидуальные отражающие, например разложение при накаливании или образование кристаллогидратов. Каждая соль индивидуальна и по-своему необычна.

Химические уравнения

Химическое уравнение - это выражение реакции при помощи химических формул. Химические уравнения показывают, какие вещества вступают в химическую реакцию и какие вещества образуются в результате этой реакции. Уравнение составляется на основе закона сохранения массы и показывает количественные соотношения веществ, участвующих в химической реакции.

В качестве примера рассмотрим взаимодействие гидроксида калия с фосфорной кислотой :

Н 3 РО 4 + 3 КОН = К 3 РО 4 + 3 Н 2 О.

Из уравнения видно, что 1 моль ортофосфорной кислоты (98 г) реагирует с 3 молями гидроксида калия (3·56 г). В результате реакции образуется 1 моль фосфата калия (212 г) и 3 моля воды (3·18 г).

98 + 168 = 266 г; 212 + 54 = 266 г видим, что масса веществ, вступивших в реакцию, равна массе продуктов реакции. Уравнения химической реакции позволяет производить различные расчёты, связанные с данной реакцией.

Сложные вещества делятся на четыре класса: оксиды, основания, кислоты и соли.

Оксиды - это сложные вещества, состоящие из двух элементов, один из которых кислород, т.е. оксид - это соединение элемента с кислородом.

Название оксидов образуется от названия элемента, входящего в состав оксида. Например, BaO - оксид бария. Если оксид элемент имеет переменную валентность, то после названия элемента в скобках указывается его валентность римской цифрой. Например, FeO - оксид железа (I), Fe2О3 - оксид железа (III).

Все оксиды делятся на солеобразующие и несолеобразующие.

Солеобразующие оксиды - это такие оксиды, которые в результате химических реакций образуют соли. Это оксиды металлов и неметаллов, которые при взаимодействии с водой образуют соответствующие кислоты, а при взаимодействии с основаниями - соответствующие кислые и нормальные соли. Например, оксид меди (CuO) является оксидом солеобразующим, потому что, например, при взаимодействии её с соляной кислотой (HCl) образуется соль:

CuO + 2HCl → CuCl2 + H2O.

В результате химических реакций можно получать и другие соли:

CuO + SO3 → CuSO4.

Несолеобразующими оксидами называются такие оксиды, которые не образуют солей. Примером могут служить СО, N2O, NO.

Солеобразующие оксиды бывают 3-х типов: основными (от слова «основание»), кислотными и амфотерными.

Основные оксиды - это оксиды металлов, которым соответствуют гидроксиды, относящиеся к классу оснований. К основным оксидам относятся, например, Na2O, K2O, MgO, CaO и т.д.

Химические свойства основных оксидов

1. Растворимые в воде основные оксиды вступают в реакцию с водой, образуя основания:


Na2O + H2O → 2NaOH.

2. Взаимодействуют с кислотными оксидами, образуя соответствующие соли

Na2O + SO3 → Na2SO4.

3. Реагируют с кислотами, образуя соль и воду:

CuO + H2SO4 → CuSO4 + H2O.

4. Реагируют с амфотерными оксидами:

Li2O + Al2O3 → 2LiAlO2.

5. Основные оксиды реагируют с кислотными оксидами, образуя соли:

Na2O + SO3 = Na2SO4

Если в составе оксидов в качестве второго элемента будет неметалл или металл, проявляющий высшую валентность (обычно проявляют от IV до VII), то такие оксиды будут кислотными. Кислотными оксидами (ангидридами кислот) называются такие оксиды, которым соответствуют гидроксиды, относящие к классу кислот. Это, например, CO2, SO3, P2O5, N2O3, Cl2O5, Mn2O7 и т.д. Кислотные оксиды растворяются в воде и щелочах, образуя при этом соль и воду.

Химические свойства кислотных оксидов

1. Взаимодействуют с водой, образуя кислоту:

SO3 + H2O → H2SO4.

Но не все кислотные оксиды непосредственно реагируют с водой (SiO2 и др.).

2. Реагируют с основанными оксидами с образованием соли:

CO2 + CaO → CaCO3

3. Взаимодействуют со щелочами, образуя соль и воду:

CO2 + Ba(OH)2 → BaCO3 + H2O.

В состав амфотерного оксида входит элемент, который обладает амфотерными свойствами. Под амфотерностью понимают способность соединений проявлять в зависимости от условий кислотные и основные свойства. Например, оксид цинка ZnO может быть как основанием, так и кислотой (Zn(OH)2 и H2ZnO2). Амфотерность выражается в том, что в зависимости от условий амфотерные оксиды проявляют либо осно?вные, либо кислотные свойства, например - Al2O3, Cr2O3, MnO2; Fe2O3 ZnO. К примеру, амфотерный характер оксида цинка проявляется при взаимодействии его как с соляной кислотой, так и с гидроксидом натрия:

ZnO + 2HCl = ZnCl 2 + H 2 O

ZnO + 2NaOH = Na 2 ZnO 2 + H 2 O

Так как далеко не все амфотерные оксиды расворимы в воде, то доказать амфотерность таких оксидов заметно сложнее. Например, оксид алюминия (III) в реакции сплавления его с дисульфатом калия проявляет основные свойства а при сплавлении с гидроксидами кислотные:

Al2O3 + 3K2S2O7 = 3K2SO4 + A12(SO4)3

Al2O3 + 2KOH = 2KAlO2 + H2O

У различных амфотерных оксидов двойственность свойств может быть выражена в различной степени. Например, оксид цинка одинаково легко растворяется и в кислотах, и в щелочах, а оксид железа (III) - Fe2O3 - обладает преимущественно основными свойствами.

Химические свойства амфотерных оксидов

1. Взаимодействуют с кислотами, образуя соль и воду:

ZnO + 2HCl → ZnCl2 + H2O.

2. Реагируют с твёрдыми щелочами (при сплавлении), образуя в результате реакции соль - цинкат натрия и воду:

ZnO + 2NaOH → Na2 ZnO2 + H2O.

При взаимодействии оксида цинка с раствором щелочи (того же NaOH) протекает другая реакция:

ZnO + 2 NaOH + H2O => Na2.

Координационное число - характеристика, которая определяет число ближайших частиц: атомов или инов в молекуле или кристалле. Для каждого амфотерного металла характерно свое координационное число. Для Be и Zn - это 4; Для и Al - это 4 или 6; Для и Cr - это 6 или (очень редко) 4;

Амфотерные оксиды обычно не растворяются в воде и не реагируют с ней.

Способы получения оксидов из простых веществ - это либо прямая реакция элемента с кислородом:

либо разложение сложных веществ:

а) оксидов

4CrO3 = 2Cr2O3 + 3O2-

б) гидроксидов

Ca(OH)2 = CaO + H2O

в) кислот

H2CO3 = H2O + CO2-

CaCO3 = CaO +CO2

А также взаимодействие кислот - окислителей с металлами и неметаллами:

Cu + 4HNO3 (конц) = Cu(NO3) 2 + 2NO2 + 2H2O

Оксиды могут быть получены при непосредственном взаимодействии кислорода с другим элементом, так и косвенным путём (например, при разложении солей, оснований, кислот). В обычных условиях оксиды бывают в твёрдом, жидком и газообразном состоянии, этот тип соединений весьма распространён в природе. Оксиды содержатся в Земной коре. Ржавчина, песок, вода, углекислый газ - это оксиды.

Основания - это сложные вещества, в молекулах которых атомы металла соединены с одной или несколькими гидроксильными группами.

Основания - это электролиты, которые при диссоциации образуют в качестве анионов только гидроксид-ионы.

NaOH = Na + + OH -

Ca(OH)2 = CaOH + + OH - = Ca 2 + + 2OH -

Существует несколько признаков классификации оснований:

В зависимости от растворимости в воде основания делят на щёлочи и нерастворимые. Щелочами являются гидроксиды щелочных металлов (Li, Na, K, Rb, Cs) и щелочноземельных металлов (Ca, Sr, Ba). Все остальные основания являются нерастворимыми.

В зависимости от степени диссоциации основания делятся на сильные электролиты (все щёлочи) и слабые электролиты (нерастворимые основания).

В зависимости от числа гидроксильных групп в молекуле основания делятся на однокислотные (1 группа ОН), например, гидроксид натрия, гидроксид калия, двухкислотные (2 группы ОН), например, гидроксид кальция, гидроксид меди(2), и многокислотные.

Химические свойства.

Ионы ОН - в растворе определяют щелочную среду.

Растворы щелочей изменяют окраску индикаторов:

Фенолфталеин: бесцветный ® малиновый,

Лакмус: фиолетовый ® синий,

Метилоранж: оранжевый ® жёлтый.

Растворы щелочей взаимодействуют с кислотными оксидами с образованием солей тех кислот, которые соответствуют реагирующим кислотным оксидам. В зависимости от количества щёлочи образуются средние или кислые соли. Например, при взаимодействии гидроксида кальция с оксидом углерода(IV) образуются карбонат кальция и вода:

Ca(OH)2 + CO2 = CaCO3? + H2O

А при взаимодействии гидроксида кальция с избытком оксида углерода (IV) образуется гидрокарбонат кальция:

Ca(OH)2 + CO2 = Ca(HCO3)2

Ca2+ + 2OH- + CO2 = Ca2+ + 2HCO32-

Все основания взаимодействуют с кислотами с образованием соли и воды, например: при взаимодействии гидроксида натрия с соляной кислотой образуются хлорид натрия и вода:

NaOH + HCl = NaCl + H2O

Na+ + OH- + H+ + Cl- = Na+ + Cl- + H2O

Гидроксид меди (II) растворяется в соляной кислоте с образованием хлорида меди (II) и воды:

Cu(OH)2 + 2HCl = CuCl2 + 2H2O

Cu(OH)2 + 2H+ + 2Cl- = Cu2+ + 2Cl- + 2H2O

Cu(OH)2 + 2H+ = Cu2+ + 2H2О.

Реакция между кислотой и основанием называется реакцией нейтрализации.

Нерастворимые основания при нагревании разлагаются на воду и соответствующий основанию оксид металла, например:

Cu(OH)2 = CuO + H2 2Fe(OH)3 = Fe2O3 + 3H2O

Щёлочи вступают во взаимодействие с растворами солей, если выполняется одно из условий протекания реакции ионного обмена до конца (выпадает осадок),

2NaOH + CuSO4 = Cu(OH)2? + Na2SO4

2OH- + Cu2+ = Cu(OH)2

Реакция протекает за счёт связывания катионов меди с гидроксид-ионами.

При взаимодействии гидроксида бария с раствором сульфата натрия образуется осадок сульфата бария.

Ba(OH)2 + Na2SO4 = BaSO4? + 2NaOH

Ba2+ + SO42- = BaSO4

Реакция протекает за счёт связывания катионов бария и и сульфат-анионов.

Кислоты - это сложные вещества, в состав молекул которых входят атомы водорода, способные замещаться или обмениваться на атомы металла и кислотный остаток.

По наличию или отсутствию кислорода в молекуле кислоты делятся на кислородсодержащие (H2SO4 серная кислота, H2SO3 сернистая кислота, HNO3 азотная кислота, H3PO4 фосфорная кислота, H2CO3 угольная кислота, H2SiO3 кремниевая кислота) и бескислородные (HF фтороводородная кислота, HCl хлороводородная кислота (соляная кислота), HBr бромоводородная кислота, HI иодоводородная кислота, H2S сероводородная кислота).

В зависимости от числа атомов водорода в молекуле кислоты кислоты бывают одноосновные (с 1 атомом Н), двухосновные (с 2 атомами Н) и трехосновные (с 3 атомами Н).

К И С Л О Т Ы

Часть молекулы кислоты без водорода называется кислотным остатком.

Кислотные остатки могут состоять из одного атома (-Cl, -Br, -I) - это простые кислотные остатки, а могут - из группы атомов (-SO3, -PO4, -SiO3) - это сложные остатки.

В водных растворах при реакциях обмена и замещения кислотные остатки не разрушаются:

H2SO4 + CuCl2 → CuSO4 + 2 HCl

Слово ангидрид означает безводный, то есть кислота без воды. Например,

H2SO4 - H2O → SO3. Бескислородные кислоты ангидридов не имеют.

Своё название кислоты получают от названия образующего кислоту элемента (кислотообразователя) с прибавлением окончаний «ная» и реже «вая»: H2SO4 - серная; H2SO3 - угольная; H2SiO3 - кремниевая и т.д.

Элемент может образовать несколько кислородных кислот. В таком случае указанные окончания в названии кислот будут тогда, когда элемент проявляет высшую валентность (в молекуле кислоты большое содержание атомов кислорода). Если элемент проявляет низшую валентность, окончание в названии кислоты будет «истая»: HNO3 - азотная, HNO2 - азотистая.

Кислоты можно получать растворением ангидридов в воде. В случае, если ангидриды в воде не растворимы, кислоту можно получить действием другой более сильной кислоты на соль необходимой кислоты. Этот способ характерен как для кислородных так и бескислородных кислот. Бескислородные кислоты получают так же прямым синтезом из водорода и неметалла с последующим растворением полученного соединения в воде:

H2 + Cl2 → 2 HCl;

Растворы полученных газообразных веществ HCl и H2S и являются кислотами.

При обычных условиях кислоты бывают как в жидком, так и в твёрдом состоянии.

Химические свойства кислот

1. Растворы кислот действуют на индикаторы. Все кислоты (кроме кремниевой) хорошо растворяются в воде. Специальные вещества - индикаторы позволяют определить присутствие кислоты.

Индикаторы - это вещества сложного строения. Они меняют свою окраску в зависимоти от взаимодействия с разными химическими веществами. В нейтральных растворах — они имеют одну окраску, в растворах оснований - другую. При взаимодействии с кислотой они меняют свою окраску: индикатор метиловый оранжевый окрашивается в красный цвет, индикатор лакмус - тоже в красный цвет.

2. Взаимодействуют с основаниями с образованием воды и соли, в которой содержится неизменный кислотный остаток (реакция нейтрализации):

H2SO4 + Ca(OH)2 → CaSO4 + 2 H2O.

3. Взаимодействуют с основанными оксидами с образованием воды и соли. Соль содержит кислотный остаток той кислоты, которая использовалась в реакции нейтрализации:

H3PO4 + Fe2O3 → 2 FePO4 + 3 H2O.

4. Взаимодействуют с металлами.

Для взаимодействия кислот с металлами должны выполнятся некоторые условия:

1. Металл должен быть достаточно активным по отношению к кислотам (в ряду активности металлов он должен располагаться до водорода). Чем левее находится металл в ряду активности, тем интенсивнее он взаимодействует с кислотами;

К, Са, Na, Мn, Аl, Zn, Fе, Ni, Sn, РЬ, Н2, Сu, Нg, Аg, Аu.

А вот реакция между раствором соляной кислоты и медью невозможна, так как медь стоит в ряду напряжений после водорода.

2. Кислота должна быть достаточно сильной (то есть способной отдавать ионы водорода H+).

При протекании химических реакций кислоты с металлами образуется соль и выделяется водород (кроме взаимодействия металлов с азотной и концентрированной серной кислотами,):

Zn + 2HCl → ZnCl2 + H2;

Cu + 4HNO3 → CuNO3 + 2 NO2 + 2 H2O.

Однако, какими бы разными ни были кислоты, все они образуют при диссоциации катионы водорода, которые и обусловливают ряд общих свойств: кислый вкус, изменение окраски индикаторов (лакмуса и метилового оранжевого), взаимодействие с другими веществами.

Так же реакция протекает между оксидами металлов и большинством кислот

CuO+ H2SO4 = CuSO4+ H2O

Опишем реакции:

2) При второй реакции должна получиться растворимая соль. Во многих случаях взаимодействие металла с кислотой практически не происходит потому, что образующаяся соль нерастворима и покрывает поверхность металла зашитной пленкой, например:

Рb + H2SO4 =/ PbSO4 + H2

Нерастворимый сульфат свинца (II) прекращает доступ кислоты к металлу, и реакция прекращается, едва успев начаться. По данной причине большинство тяжелых металлов практически не взаимодействует с фосфорной, угольной и сероводородной кислотами.

3) Третья реакция характерна для растворов кислот, поэтому-нерастворимые кислоты, например кремниевая, не вступают в реакции с металлами. Концентрированный раствор серной кислоты и раствор азотной кислоты любой концентрации взаимодействуют с металлами несколько иначе, поэтому уравнения реакций между металлами и этими кислотами записываются подругой схеме. Разбавленный раствор серной кислоты взаимодействует с металлами. стоящими в ряду напряжении до водорода, образуя соль и водород.

4) Четвертая реакция является типичной реакцией ионного обмена п протекает только в том случае, если образуется осадок или газ.

Соли - это сложные вещества, молекулы которых, состоят из атомов металлов и кислотных остатков (иногда могут содержать водород). Например, NaCl - хлорид натрия, СаSO4 - сульфат кальция и т. д.

Практически все соли являются ионными соединениями, поэтому в солях между собой связаны ионы кислотных остатков и ионы металла:

Na+Cl - хлорид натрия

Ca2+SO42 - сульфат кальция и т.д.

Соль является продуктом частичного или полного замещения металлом атомов водорода кислоты.

Отсюда различают следующие виды солей:

1. Средние соли - все атомы водорода в кислоте замещены металлом: Na2CO3, KNO3 и т.д.

2. Кислые соли - не все атомы водорода в кислоте замещены металлом. Разумеется, кислые соли могут образовывать только двух- или многоосновные кислоты. Одноосновные кислоты кислых солей давать не могут: NaHCO3, NaH2PO4 ит. д.

3. Двойные соли - атомы водорода двух- или многоосновной кислоты замещены не одним металлом, а двумя различными: NaKCO3, KAl(SO4)2 и т.д.

4. Соли основные можно рассматривать как продукты неполного, или частичного, замещения гидроксильных групп оснований кислотными остатками: Аl(OH)SO4 , Zn(OH)Cl и т.д.

По международной номенклатуре название соли каждой кислоты происходит от латинского названия элемента. Например, соли серной кислоты называются сульфатами: СаSO4 - сульфат кальция, Mg SO4 - сульфат магния и т.д.; соли соляной кислоты называются хлоридами: NaCl - хлорид натрия, ZnCI2 - хлорид цинка и т.д.

В название солей двухосновных кислот добавляют частицу «би» или «гидро»: Mg(HCl3)2 - бикарбонат или гидрокарбонат магния.

При условии, что в трехосновной кислоте замещён на металл только один атом водорода, то добавляют приставку «дигидро»: NaH2PO4 - дигидрофосфат натрия.

Соли - это твёрдые вещества, обладающие самой различной растворимостью в воде.

Химические свойства солей определяются свойствами катионов и анионов, которые входят в их состав.

1. Некоторые соли разлагаются при прокаливании:

CaCO3 = CaO + CO2

2. Взаимодействуют с кислотами с образованием новой соли и новой кислоты. Для осуществление этой реакции необходимо, чтобы кислота была более сильная чем соль, на которую воздействует кислота:

2NaCl + H2 SO4 → Na2SO4 + 2HCl.

3. Взаимодействуют с основаниями, образуя новую соль и новое основание:

Ba(OH)2 + Mg SO4 → BaSO4↓ + Mg(OH)2.

4. Взаимодействуют друг с другом с образованием новых солей:

NaCl + AgNO3 → AgCl + NaNO3 .

5. Взаимодействуют с металлами, которые стоят в раду активности до металла, который входит в состав соли.

Основания могут взаимодействовать:

  • с неметаллами -

    6KOH + 3S → K2SO 3 + 2K 2 S + 3H 2 O;

  • с кислотными оксидами -

    2NaOH + CO 2 → Na 2 CO 3 + H 2 O;

  • с солями (выпадение осадка, высвобождение газа) -

    2KOH + FeCl 2 → Fe(OH) 2 + 2KCl.

Существую также другие способы получения:

  • взаимодействие двух солей -

    CuCl 2 + Na 2 S → 2NaCl + CuS↓;

  • реакция металлов и неметаллов -
  • соединение кислотных и основных оксидов -

    SO 3 + Na 2 O → Na 2 SO 4 ;

  • взаимодействие солей с металлами -

    Fe + CuSO 4 → FeSO 4 + Cu.

Химические свойства

Растворимые соли являются электролитами и подвержены реакции диссоциации. При взаимодействии с водой они распадаются, т.е. диссоциируют на положительно и отрицательно заряженные ионы - катионы и анионы соответственно. Катионами являются ионы металлов, анионами - кислотные остатки. Примеры ионных уравнений:

  • NaCl → Na + + Cl − ;
  • Al 2 (SO 4) 3 → 2Al 3 + + 3SO 4 2− ;
  • CaClBr → Ca2 + + Cl - + Br - .

Помимо катионов металлов в солях могут присутствовать катионы аммония (NH4 +) и фосфония (PH4 +).

Другие реакции описаны в таблице химических свойств солей.

Рис. 3. Выделение осадка при взаимодействии с основаниями.

Некоторые соли в зависимости от вида разлагаются при нагревании на оксид металла и кислотный остаток или на простые вещества. Например, СаСO 3 → СаO + СО 2 , 2AgCl → Ag + Cl 2 .

Что мы узнали?

Из урока 8 класса химии узнали об особенностях и видах солей. Сложные неорганические соединения состоят из металлов и кислотных остатков. Могут включать водород (кислые соли), два металла или два кислотных остатка. Это твёрдые кристаллические вещества, которые образуются в результате реакций кислот или щелочей с металлами. Реагируют с основаниями, кислотами, металлами, другими солями.

Основания сложные вещества, которые состоят из катиона металла Ме + (или металлоподобного катиона, например, иона аммония NH 4 +) и гидроксид-аниона ОН — .

По растворимости в воде основания делят на растворимые (щелочи) и нерастворимые основания . Также есть неустойчивые основания , которые самопроизвольно разлагаются.

Получение оснований

1. Взаимодействие основных оксидов с водой. При этом с водой реагируют в обычных условиях только те оксиды, которым соответствует растворимое основание (щелочь). Т.е. таким способом можно получить только щёлочи:

основный оксид + вода = основание

Например , оксид натрия в воде образует гидроксид натрия (едкий натр):

Na 2 O + H 2 O → 2NaOH

При этом оксид меди (II) с водой не реагирует :

CuO + H 2 O ≠

2. Взаимодействие металлов с водой. При этом с водой реагируют в обычных условиях только щелочные металлы (литий, натрий, калий. рубидий, цезий) , кальций, стронций и барий. При этом протекает окислительно-восстановительная реакция, окислителем выступает водород, восстановителем является металл.

металл + вода = щёлочь + водород

Например , калий реагирует с водой очень бурно :

2K 0 + 2H 2 + O → 2K + OH + H 2 0

3. Электролиз растворов некоторых солей щелочных металлов . Как правило, для получения щелочей электролизу подвергают растворы солей, образованных щелочными или щелочноземельными металлами и бескилородными кислотами (кроме плавиковой) – хлоридами, бромидами, сульфидами и др. Более подробно этот вопрос рассмотрен в статье .

Например , электролиз хлорида натрия:

2NaCl + 2H 2 O → 2NaOH + H 2 + Cl 2

4. Основания образуются при взаимодействии других щелочей с солями. При этом взаимодействуют только растворимые вещества, а в продуктах должна образоваться нерастворимая соль, либо нерастворимое основание:

либо

щелочь + соль 1 = соль 2 ↓ + щелочь

Например: карбонат калия реагирует в растворе с гидроксидом кальция:

K 2 CO 3 + Ca(OH) 2 → CaCO 3 ↓ + 2KOH

Например: хлорид меди (II) взаимодействет в растворе с гидроксидом натрия. При этом выпадает голубой осадок гидроксида меди (II) :

CuCl 2 + 2NaOH → Cu(OH) 2 ↓ + 2NaCl

Химические свойства нерастворимых оснований

1. Нерастворимые основания взаимодействуют с сильными кислотами и их оксидами (и некоторыми средними кислотами). При этом образуются соль и вода .

нерастворимое основание + кислота = соль + вода

нерастворимое основание + кислотный оксид = соль + вода

Например , гидроксид меди (II) взаимодействует с сильной соляной кислотой:

Cu(OH) 2 + 2HCl = CuCl 2 + 2H 2 O

При этом гидроксид меди (II) не взаимодействует с кислотным оксидом слабой угольной кислоты – углекислым газом:

Cu(OH) 2 + CO 2 ≠

2. Нерастворимые основания разлагаются при нагревании на оксид и воду.

Например , гидроксид железа (III) разлагается на оксид железа (III) и воду при прокаливании:

2Fe(OH) 3 = Fe 2 O 3 + 3H 2 O

3. Нерастворимые основания не взаимодействуют с амфотерными оксидами и гидроксидами.

нерастворимое оснвоание + амфотерный оксид ≠

нерастворимое основание + амфотерный гидроксид ≠

4. Некоторые нерастворимые основания могут выступать в качестве восстановителей . Восстановителями являются основания, образованные металлами с минимальной или промежуточной степенью окисления , которые могут повысить свою степень окисления (гидроксид железа (II), гидроксид хрома (II) и др.).

Например , гидроксид железа (II) можно окислить кислородом воздуха в присутствии воды до гидроксида железа (III):

4Fe +2 (OH) 2 + O 2 0 + 2H 2 O → 4Fe +3 (O -2 H) 3

Химические свойства щелочей

1. Щёлочи взаимодействуют с любыми кислотами – и сильными, и слабыми . При этом образуются средняя соль и вода. Эти реакции называются реакциями нейтрализации . Возможно и образование кислой соли , если кислота многоосновная, при определенном соотношении реагентов, либо в избытке кислоты . В избытке щёлочи образуется средняя соль и вода:

щёлочь (избыток) + кислота = средняя соль + вода

щёлочь + многоосновная кислота (избыток) = кислая соль + вода

Например , гидроксид натрия при взаимодействии с трёхосновной фосфорной кислотой может образовывать 3 типа солей: дигидрофосфаты , фосфаты или гидрофосфаты .

При этом дигидрофосфаты образуются в избытке кислоты, либо при мольном соотношении (соотношении количеств веществ) реагентов 1:1.

NaOH + H 3 PO 4 → NaH 2 PO 4 + H 2 O

При мольном соотношении количества щелочи и кислоты 2:1 образуются гидрофосфаты:

2NaOH + H 3 PO 4 → Na 2 HPO 4 + 2H 2 O

В избытке щелочи, либо при мольном соотношении количества щелочи и кислоты 3:1 образуется фосфат щелочного металла.

3NaOH + H 3 PO 4 → Na 3 PO 4 + 3H 2 O

2. Щёлочи взаимодействуют с амфотерными оксидами и гидроксидами. При этом в расплаве образуются обычные соли , а в растворе – комплексные соли .

щёлочь (расплав) + амфотерный оксид = средняя соль + вода

щёлочь (расплав) + амфотерный гидроксид = средняя соль + вода

щёлочь (раствор) + амфотерный оксид = комплексная соль

щёлочь (раствор) + амфотерный гидроксид = комплексная соль

Например , при взаимодействии гидроксида алюминия с гидроксидом натрия в расплаве образуется алюминат натрия. Более кислотный гидроксид образует кислотный остаток:

NaOH + Al(OH) 3 = NaAlO 2 + 2H 2 O

А в растворе образуется комплексная соль:

NaOH + Al(OH) 3 = Na

Обратите внимание, как составляется формула комплексной соли: сначала мы выбираем центральный атом (к ак правило, это металл из амфотерного гидроксида). Затем дописываем к нему лиганды — в нашем случае это гидроксид-ионы. Число лигандов, как правило, в 2 раза больше, чем степень окисления центрального атома. Но комплекс алюминия — исключение, у него число лигандов чаще всего равно 4. Заключаем полученный фрагмент в квадртаные скобки — это комплексный ион. Определяем его заряд и снаружи дописываем нужное количество катионов или анионов.

3. Щёлочи взаимодействуют с кислотными оксидами. При этом возможно образование кислой или средней соли , в зависимости от мольного соотношения щёлочи и кислотного оксида. В избытке щёлочи образуется средняя соль, а в избытке кислотного оксида образуется кислая соль:

щёлочь (избыток) + кислотный оксид = средняя соль + вода

либо:

щёлочь + кислотный оксид (избыток) = кислая соль

Например , при взаимодействии избытка гидроксида натрия с углекислым газом образуется карбонат натрия и вода:

2NaOH + CO 2 = Na 2 CO 3 + H 2 O

А при взаимодействии избытка углекислого газа с гидроксидом натрия образуется только гидрокарбонат натрия:

2NaOH + CO 2 = NaHCO 3

4. Щёлочи взаимодействуют с солями. Щёлочи реагируют только с растворимыми солями в растворе , при условии, что в продуктах образуется газ или осадок . Такие реакции протекают по механизму ионного обмена .

щёлочь + растворимая соль = соль + соответствующий гидроксид

Щёлочи взаимодействуют с растворами солей металлов, которым соответствуют нерастворимые или неустойчивые гидроксиды.

Например , гидроксид натрия взаимодействует с сульфатом меди в растворе :

Cu 2+ SO 4 2- + 2Na + OH — = Cu 2+ (OH) 2 — ↓ + Na 2 + SO 4 2-

Также щёлочи взаимодействуют с растворами солей аммония .

Например , гидроксид калия взаимодействует с раствором нитрата аммония:

NH 4 + NO 3 — + K + OH — = K + NO 3 — + NH 3 + H 2 O

! При взаимодействии солей амфотерных металлов с избытком щёлочи образуется комплексная соль!

Давайте рассмотрим этот вопрос подробнее. Если соль, образованная металлом, которому соответствует амфотерный гидроксид , взаимодействует с небольшим количеством щёлочи, то протекает обычная обменная реакция, и в осадок выпадает гидроксид этого металла .

Например , избыток сульфата цинка реагирует в растворе с гидроксидом калия:

ZnSO 4 + 2KOH = Zn(OH) 2 ↓ + K 2 SO 4

Однако, в данной реакции образуется не основание, а амфотерный гидроксид . А, как мы уже указывали выше, амфотерные гидроксиды растворяются в избытке щелочей с образованием комплексных солей . Таким образом, при взаимодействии сульфата цинка с избытком раствора щёлочи образуется комплексная соль, осадок не выпадает:

ZnSO 4 + 4KOH = K 2 + K 2 SO 4

Таким образом, получаем 2 схемы взаимодействия солей металлов, которым соответствуют амфотерные гидроксиды, с щелочами:

соль амф.металла (избыток) + щёлочь = амфотерный гидроксид↓ + соль

соль амф.металла + щёлочь (избыток) = комплексная соль + соль

5. Щёлочи взаимодействуют с кислыми солями. При этом образуются средние соли, либо менее кислые соли.

кислая соль + щёлочь = средняя соль + вода

Например , гидросульфит калия реагирует с гидроксидом калия с образованием сульфита калия и воды:

KHSO 3 + KOH = K 2 SO 3 + H 2 O

Свойства кислых солей очень удобно определять, разбивая мысленно кислую соль на 2 вещества — кислоту и соль. Например, гидрокарбонта натрия NaHCO 3 мы разбиваем на уольную кислоту H 2 CO 3 и карбонат натрия Na 2 CO 3 . Свойства гидрокарбоната в значительной степени определяются свойствами угольной кислоты и свойствами карбоната натрия.

6. Щёлочи взаимодействуют с металлами в растворе и расплаве. При этом протекает окислительно-восстановительная реакция, в растворе образуется комплексная соль и водород , в расплаве — средняя соль и водород .

Обратите внимание! С щелочами в растворе реагируют только те металлы, у которых оксид с минимальной положительной степенью окисления металла амфотерный!

Например , железо не реагирует с раствором щёлочи, оксид железа (II) — основный. А алюминий растворяется в водном растворе щелочи, оксид алюминия — амфотерный:

2Al + 2NaOH + 6H 2 + O = 2Na + 3H 2 0

7. Щёлочи взаимодействуют с неметалами. При этом протекают окислительно-восстановительные реакции. Как правило, неметаллы диспропорционируют в щелочах . Не реагируют с щелочами кислород, водород, азот, углерод и инертные газы (гелий, неон, аргон и др.):

NaOH +О 2 ≠

NaOH +N 2 ≠

NaOH +C ≠

Сера, хлор, бром, йод, фосфор и другие неметаллы диспропорционируют в щелочах (т.е. самоокисляются-самовосстанавливаются).

Например , хлор при взаимодействии с холодной щелочью переходит в степени окисления -1 и +1:

2NaOH +Cl 2 0 = NaCl — + NaOCl + + H 2 O

Хлор при взаимодействии с горячей щелочью переходит в степени окисления -1 и +5:

6NaOH +Cl 2 0 = 5NaCl — + NaCl +5 O 3 + 3H 2 O

Кремний окисляется щелочами до степени окисления +4.

Например , в растворе:

2NaOH +Si 0 + H 2 + O= NaCl — + Na 2 Si +4 O 3 + 2H 2 0

Фтор окисляет щёлочи:

2F 2 0 + 4NaO -2 H = O 2 0 + 4NaF — + 2H 2 O

Более подробно про эти реакции можно прочитать в статье .

8. Щёлочи не разлагаются при нагревании.

Исключение — гидроксид лития:

2LiOH = Li 2 O + H 2 O

Соли-продукт замещения атомов водорода в кислоте на металл. Растворимые соли в соде диссоцируют на катион металла и анион кислотного остатка. Соли делят на:

· Средние

· Основные

· Комплексные

· Двойные

· Смешанные

Средние соли. Это продукты полного замещения атомов водорода в кислоте на атомы металла, или на группу атомов (NH 4 +): MgSO 4 ,Na 2 SO 4 ,NH 4 Cl, Al 2 (SO 4) 3 .

Названия средних солей происходят от названия металлов и кислот:CuSO 4 -сульфат меди,Na 3 PO 4 -фосфат натрия,NaNO 2 -нитрит натрия,NaClO-гипохлорит натрия,NaClO 2 -хлорит натрия,NaClO 3 -хлорат натрия,NaClO 4 -перхлорат натрия,CuI- йодид меди(I), CaF 2 -фторид кальция. Так же надо запомнить несколько тривиальных названий: NaCl-поваренная соль, KNO3-калийная селитра, K2CO3-поташ, Na2CO3-сода кальцинированная,Na2CO3∙10H2O-сода кристаллическая, CuSO4- медный купорос,Na 2 B 4 O 7 . 10H 2 O- бура,Na 2 SO 4 . 10H 2 O-глауберова соль.Двойные соли. Это соли, содержащие два типа катионов (атомы водорода многоосновной кислоты замещены двумя различными катионами): MgNH 4 PO 4 , KAl (SO 4 ) 2 , NaKSO 4 .Двойные соли как индивидуальные соединения существуют только в кристаллическом виде. При растворении в воде они полностью диссоциируютна ионы металлов и кислотные остатки (если соли растворимые), например:

NaKSO 4 ↔ Na + + K + + SO 4 2-

Примечательно, что диссоциация двойных солей в водных растворах проходит в 1 ступень. Для названия солей данного типа нужно знать названия аниона и двух катионов: MgNH 4 PO 4 - фосфат магния-аммония.

Комплексные соли. Это частицы (нейтральные молекулы или ионы), которые образуются в результате присоединения к данному иону(или атому), называемомукомплексообразователем , нейтральных молекул или других ионов, называемых лигандами . Комплексные соли делятся на:

1) Катионные комплексы

Cl 2 - дихлоридтетраамминцинка(II)
Cl 2 - ди хлоридгексаамминкобальта(II)

2) Анионные комплексы

K 2 - тетрафторобериллат(II) калия
Li -
тетрагидридоалюминат(III) лития
K 3 -
гексацианоферрат(III) калия

Теорию строения комплексных соединений разработал швейцарский химик А. Вернер.

Кислые соли – продукты неполного замещения атомов водорода в многоосновных кислотах на катионы металла.

Например: NaHCO 3

Химические свойства:
Реагируют с металлами, стоящими в ряду напряжений левее водорода .
2KHSO 4 +Mg→H 2 +Mg(SO) 4 +K 2 (SO) 4

Заметим, что для таких реакций опасно брать щелочные металлы, ибо они вначале прореагируют с водой с большим выделением энергии, и произойдёт взрыв, так как все реакции происходят в растворах.

2NaHCO 3 +Fe→H 2 +Na 2 CO 3 +Fe 2 (CO 3) 3 ↓

Кислые соли реагируют с растворами щелочей и образуют среднюю(ие) соль(ли) и воду:

NaHCO 3 +NaOH→Na 2 CO 3 +H 2 O

2KHSO 4 +2NaOH→2H 2 O+K 2 SO 4 +Na 2 SO 4

Кислые соли реагируют с растворами средних солей в том случае, если выделяется газ, выпадает осадок, или выделяется вода:

2KHSO 4 +MgCO 3 →MgSO 4 +K 2 SO 4 +CO 2 +H 2 O

2KHSO 4 +BaCl 2 →BaSO 4 ↓+K 2 SO 4 +2HCl

Кислые соли реагируют с кислотами, если кислота-продукт реакции будет более слабая или летучая, чем добавленная.

NaHCO 3 +HCl→NaCl+CO 2 +H 2 O

Кислые соли реагируют с основными оксидами с выделением воды и средних солей:

2NaHCO 3 +MgO→MgCO 3 ↓+Na 2 CO 3 +H 2 O

2KHSO 4 +BeO→BeSO 4 +K 2 SO 4 +H 2 O

Кислые соли (в частности гидрокарбонаты) разлагаются под действием температуры:
2NaHCO 3 → Na 2 CO 3 +CO 2 +H 2 O

Получение:

Кислые соли образуются при воздействии на щёлочь избытком раствора многоосновной кислоты (реакция нейтрализации):

NaOH+H 2 SO 4 →NaHSO 4 +H 2 O

Mg(OH) 2 +2H 2 SO 4 →Mg(HSO 4) 2 +2H 2 O

Кислые соли образуются при растворении основных оксидов в многоосновных кислотах:
MgO+2H 2 SO 4 →Mg(HSO 4) 2 +H 2 O

Кислые соли образуются при растворении металлов в избытке раствора многоосновной кислоты:
Mg+2H 2 SO 4 →Mg(HSO 4) 2 +H 2

Кислые соли образуются в результате взаимодействия средней соли и кислоты, которой образован анион средней соли:
Ca 3 (PO 4) 2 +H 3 PO 4 →3CaHPO 4

Основные соли:

Основные соли – продукт неполного замещения гидроксогруппы в молекулах многокислотных оснований на кислотные остатки .

Пример: MgOHNO 3 ,FeOHCl.

Химические свойства:
Основные соли реагируют с избытком кислоты, образуя среднюю соль и воду.

MgOHNO 3 +HNO 3 →Mg(NO 3) 2 +H 2 O

Основные соли разлагаются температурой:

2 CO 3 →2CuO+CO 2 +H 2 O

Получение основных солей:
Взаимодействие солей слабых кислот со средними солями:
2MgCl 2 +2Na 2 CO 3 +H 2 O→ 2 CO 3 +CO 2 +4NaCl
Гидролиз солей, образованных слабым основанием и сильной кислотой:

ZnCl 2 +H 2 O→Cl+HCl

Большинство основных солей являются малорастворимыми. Многие из них являются минералами, напримермалахит Cu 2 CO 3 (OH) 2 и гидроксилапатит Ca 5 (PO 4) 3 OH.

Свойства смешанных солей не рассматриваются в школьном курсе химии, но определение важно знать.
Смешанные соли – это соли, в составе которых к одному катиону металла присоединены кислотные остатки двух разных кислот.

Наглядный пример -Ca(OCl)Cl белильная известь (хлорка).

Номенклатура:

1. Соль содержит комплексный катион

Сначала называют катион, затем входящие в внутреннюю сферу лиганды- анионы, с окончанием на «о» (Cl - - хлоро, OH - -гидроксо), затем лиганды, представляющие собой нейтральные молекулы (NH 3 -амин, H 2 O -акво).Если одинаковых лигандов больше 1, о их количество обозначают греческими числительными: 1 - моно, 2 - ди,3 - три, 4 - тетра, 5 - пента, 6 - гекса, 7 - гепта, 8 - окта, 9 - нона, 10 - дека. Последним называют ион-комплексообразователь, в скобках указывая его валентность, если она переменная.

[ Ag (NH 3 ) 2 ](OH )-гидроксид диамин серебра (I )

[ Co (NH 3 ) 4 Cl 2 ] Cl 2 -хлорид дихлор o тетраамин кобальта (III )

2. Соль содержит комплексный анион.

Сначала называют лиганды -анионы, затем входящие в внутреннюю сферу нейтральные молекулы с окончанием на «о», указывая их количество греческими числительными. Последним называют ион-комплексообразователь на латинском, с суффиксом «ат», указывая в скобочках валентность. Далее пишется название катиона, находящегося в внешней сфере, число катионов не указывается.

K 4 -гексацианоферрат (II) калия(реактив на ионы Fe 3+)

K 3 - гексацианоферрат (III) калия(реактив на ионы Fe 2+)

Na 2 -тетрагидроксоцинкат натрия

Большинство ионов комплексообразователей- металлы. Наибольшую склонность к комплексообрзованию проявляют d элементы. Вокруг центрального иона-комплексообразователя находятся противоположно заряженные ионы или нейтральные молекулы- лиганды или адденды.

Ион-комплексообразователь и лиганды составляют внутреннюю сферу комплекса (в квадратных скобочках), число лигандов, координирующихся вокруг центрального иона называют координационным числом.

Ионы, не вошедшие в внутреннюю сферу, образуют внешнюю сферу. Если комплексный ион- катион, то во внешней сфере анионы и наоборот, если комплексный ион-анион, то во внешней сфере- катионы. Катионами обычно являются ионы щелочных и щёлочноземельных металлов, катион аммония. При диссоциации комплексные соединения дают сложные комплексные ионы, которые довольно устойчивы в растворах:

K 3 ↔3K + + 3-

Если речь идёт о кислых солях, то при чтении формулы произносится приставка гидро-, например:
Гидросульфид натрия NaHS

Гидрокарбонат натрия NaHCO 3

С основными солями же используется приставка гидроксо- или дигидроксо-

(зависит от степени окисления металла в соли), например:
гидроксохлорид магнияMg(OH)Cl, дигидроксохлорид алюминия Al(OH) 2 Cl

Способы получения солей:

1. Прямое взаимодействие металла с неметаллом . Этим способом можно получают соли бескислородных кислот.

Zn+Cl 2 →ZnCl 2

2. Взаимодействие кислоты и основания (реакция нейтрализации). Реакции этого типа имеют большое практическое значение (качественные реакции на большинство катионов), они всегда сопровождаются выделением воды:

NaOH+HCl→NaCl+H 2 O

Ba(OH) 2 +H 2 SO 4 →BaSO 4 ↓+2H 2 O

3. Взаимодействие основного оксида с кислотным :

SO 3 +BaO→BaSO 4 ↓

4. Взаимодействие кислотного оксида и основания :

2NaOH+2NO 2 →NaNO 3 +NaNO 2 +H 2 O

NaOH+CO 2 →Na 2 CO 3 +H 2 O

5. Взаимодействие основного оксида и кислота :

Na 2 O+2HCl→2NaCl+H 2 O

CuO+2HNO 3 =Cu(NO 3) 2 +H 2 O

6. Прямое взаимодействие металла с кислотой. Эта реакция может сопровождаться выделением водорода. Будет ли выделяться водорода или нет зависит от активности металла, химических свойств кислоты и ее концентрации (см. Свойства концентрированной серной и азотной кислот).

Zn+2HCl=ZnCl 2 +H 2

H 2 SO 4 +Zn=ZnSO 4 +H 2

7. Взаимодействие соли с кислотой . Эта реакция будет происходить при условии, что кислота, образующая соль слабее или более летуча, чем кислота, вступившая в реакцию:

Na 2 CO 3 +2HNO 3 =2NaNO 3 +CO 2 +H 2 O

8. Взаимодействие соли с кислотным оксидом. Реакции идут только при нагревании, поэтому, вступающий в реакцию оксид должен быть менее летучим, чем образующийся после реакции:

CaCO 3 +SiO 2 =CaSiO 3 +CO 2

9. Взаимодействие неметалла с щелочью . Галогены, сера и некоторые другие элементы, взаимодействуя с щелочами дают бескислородную и кислородосодержащую соли:

Cl 2 +2KOH=KCl+KClO+H 2 O(реакция идёт без нагревания)

Cl 2 +6KOH=5KCl+KClO 3 +3H 2 O (реакция идёт с нагреванием)

3S+6NaOH=2Na 2 S+Na 2 SO 3 +3H 2 O

10. Взаимодействие между двумя солями. Это наиболее распространённыйспособ получения солей. Для этого обе соли, вступившие в реакцию должны бать хорошо растворимы, а так как это реакция ионного обмена, то, для того, чтобы она прошла до конца, нужно чтобы 1 из продуктов реакции был нерастворим:

Na 2 CO 3 +CaCl 2 =2NaCl+CaCO 3 ↓

Na 2 SO 4 + BaCl 2 =2NaCl+BaSO 4 ↓

11. Взаимодействие между солью и металлом . Реакция протекает в том случае, если металл стоит в ряду напряжения металлов левее того, который содержится в соли:

Zn+CuSO 4 =ZnSO 4 +Cu↓

12. Термическое разложение солей . При нагревании некоторых кислородосодержащих солей образуются новые, с меньшим содержанием кислорода, или вообще его не содержащие:

2KNO 3 → 2KNO 2 +O 2

4KClO 3 → 3KClO 4 +KCl

2KClO 3 → 3O 2 +2KCl

13. Взаимодействие неметалла с солью. Некоторые неметаллы способны соединяться с солями, с образованием новых солей:

Cl 2 +2KI=2KCl+I 2 ↓

14. Взаимодействие основания с солью . Так как это реакцияионного обмена, то, для того, чтобы она прошла до конца, нужно чтобы 1 из продуктов реакции был нерастворим (это реакция так же пользуются для перевода кислых солей в средние):

FeCl 3 +3NaOH=Fe(OH) 3 ↓ +3NaCl

NaOH+ZnCl 2 = (ZnOH)Cl+NaCl

KHSO 4 +KOH=K 2 SO 4 +H 2 O

Так же таким способом можно получать и двойные соли:

NaOH+ KHSO 4 =KNaSO 4 +H 2 O

15. Взаимодействие металла с щелочью. Металлы, которые являются амфотерными реагируют с щелочами, образуя комплексы:

2Al+2NaOH+6H 2 O=2Na+3H 2

16. Взаимодействие солей(оксидов, гидроксидов, металлов) с лигандами:

2Al+2NaOH+6H 2 O=2Na+3H 2

AgCl+3NH 4 OH=OH+NH 4 Cl+2H 2 O

3K 4 +4FeCl 3 =Fe 3 3 +12KCl

AgCl+2NH 4 OH=Cl+2H 2 O

Редактор: Харламова Галина Николаевна