Ремонт Стены Уход

Гост выполнение научно исследовательских работ. Порядок выполнения и приемки этапов нир и нир в целом

Результатов измерений

Основные понятия, термины и определения

Измерение – определение значения физической величины опытным путем. Измерения подразделяются на две группы: прямые и косвенные. Прямое измерение - нахождение значения физической величины непосредственно с помощью приборов. Косвенное измерение – нахождение искомой величины на основании известной зависимости между этой величиной и величинами, найденными в процессе прямых измерений. Например, для определения ускорения равноускоренного движения тела можно использовать формулу , гдеS - пройденный путь, t – время движения. Путь и время движения находят непосредственно в ходе эксперимента, то есть в процессе прямых измерений, а ускорение можно рассчитать по приведенной формуле и, следовательно, его значение будет определено в результате косвенного измерения.

Отклонение результата прямого или косвенного измерения от истинного значения искомой величины называется погрешностью измерения . Погрешности прямых измерений обусловлены возможностями измерительных приборов, методикой измерений и условиями проведения эксперимента. Погрешности косвенных измерений обусловлены “переносом” на искомую величину погрешностей прямых измерений тех величин, на основе которых она рассчитывается. По способу числового выражения различают абсолютные погрешности (ΔА ), выраженные в единицах измеряемой величины (А ), и относительные погрешности δA =(ΔA /A )·100%, выраженные в процентах.

Существуют погрешности трех видов: систематические, случайные и промахи.

Под систематическими погрешностями понимают те, причина возникновения которых остается постоянной или закономерно изменяется в течение всего процесса измерения. Источниками систематических погрешностей обычно являются неправильная юстировка приборов, закономерно изменяющиеся внешние факторы, неправильно выбранная методика измерений. Для выявления и исключения систематических погрешностей необходимо предварительно проанализировать условия измерения, провести контрольные поверки измерительных приборов и сопоставить получаемые результаты с данными более точных измерений. К неисключаемым систематическим погрешностям, которые необходимо учитывать при обработке результатов, относят погрешности используемых приборов и инструментов (приборные погрешности).

Приборная погре шность равна половине цены деления прибора ΔA пр = ЦД/2 (для приборов типа линейки, штангенциркуля, микрометра) или определяется по классу точности прибора (для стрелочных электроизмерительных приборов).

Под классом точности прибора γ понимают величину, равную:

где ΔA пр  приборная погрешность (максимальная допустимая абсолютная погрешность, одинаковая для всех точек шкалы); A max  предел измерения (максимальное значение показаний прибора).

Для электронных приборов формулы для расчета приборной погрешности приводятся в паспорте прибора.

Случайные погрешности возникают в результате действия различных случайных факторов. Этот вид погрешностей обнаруживается при многократном измерении одной и той же величины в одинаковых условиях с помощью одних и тех же приборов: результаты серии измерений несколько отличаются друг от друга случайным образом. Вклад случайных погрешностей в результат измерения учитывают в процессе обработки результатов.

Под промахами понимают большие погрешности, резко искажающие результат измерения. Они возникают как следствие грубых нарушений процесса измерений: неисправности приборов, ошибок экспериментатора, скачков напряжения в электрической цепи и т.д. Результаты измерений, содержащие промахи, должны быть отброшены в процессе предварительного анализа.

С целью выявления промахов и последующего учета вклада случайных и приборных погрешностей прямые измерения искомой величины проводят несколько раз в одних и тех же условиях, то есть проводят серию равноточных прямых измерений. Целью последующей обработки результатов серии равноточных измерений является:

Результат прямого или косвенного измерения должен быть представлен следующим образом:

А= (‹А› ± ΔА ) ед.изм., α = …,

где ‹А› – среднее значение результата измерений, ΔА – полуширина доверительного интервала, α – доверительная вероятность. При этом необходимо учитывать, что численное значение ΔА должно содержать не более двух значащих цифр, а значение ‹А› должно оканчиваться цифрой того же разряда, что и ΔА .

Пример: Результат измерения времени движения тела имеет вид:

t = (18,5 ± 1,2) c; α = 0,95.

Из этой записи следует, что с вероятностью 95 % истинное значение времени движения лежит в интервале от 17,3 с до 19,7 с.

ПОГРЕШНОСТИ ИЗМЕРЕНИЙ ФИЗИЧЕСКИХ ВЕЛИЧИН И

ОБРАБОТКА РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ

Измерением называют нахождение значений физических величин опытным путем с помощью специальных технических средств. Измерения бывают прямые и косвенные. При прямом измерении искомое значение физической величины находят непосредственно с помощью измерительных приборов (например, измерение размеров тел с помощью штангенциркуля). Косвенным называют измерение, при котором искомое значение физической величины находят на основании известной функциональной зависимости между измеряемой величиной и величинами, подвергаемыми прямым измерениям. Например, при определении объема V цилиндра измеряют его диаметр D и высоту Н, а затем по формуле p D 2 /4 вычисляют его объем.

Вследствие неточности измерительных приборов и трудности учета всех побочных явлений при измерениях неизбежно возникают погрешности измерений. Погрешностью или ошибкой измерения называют отклонение результата измерения от истинного значения измеряемой физической величины. Погрешность измерения обычно неизвестна, как неизвестно и истинное значение измеряемой величины. Поэтому задача элементарной обработки результатов измерений заключается в установлении интервала, внутри которого с заданной вероятностью находится истинное значение измеряемой физической величины.

Классификация погрешностей измерений

Погрешности разделяют на три вида:

1) грубые или промахи,

2) систематические,

3) случайные .

Грубые погрешности - это ошибочные измерения, возникающие в результате небрежности отсчета по прибору, неразборчивости записи показаний. Например, запись результата 26,5 вместо 2,65; отсчет по шкале 18 вместо 13 и т.д. При обнаружении грубой ошибки результат данного измерения следует сразу отбросить, а само измерение повторить.

Систематические погрешности - ошибки, которые при повторных измерениях остаются постоянными или изменяются по определенному закону. Эти погрешности могут быть обусловлены неправильным выбором метода измерения, несовершенством или неисправностью приборов (например, измерения с помощью прибора, у которого смещен нуль). Для того, чтобы максимально исключить систематические погрешности, следует всегда тщательно анализировать метод измерений, сверять приборы с эталонами. В дальнейшем будем считать, что все систематические погрешности устранены, кроме тех, которые вызваны неточностью изготовления приборов и ошибкой отсчета. Эту погрешность будем называть аппаратурной.

Случайные погрешности - это ошибки, причина которых заранее не может быть учтена. Случайные погрешности зависят от несовершенства наших органов чувств, от непрерывного действия изменяющихся внешних условий (изменение температуры, давления, влажности, вибрация воздуха и т.д.). Случайные погрешности являются неустранимыми, они неизбежно присутствуют во всех измерениях, но их можно оценить, применяя методы теории вероятностей.

Обработка результатов прямых измерений

Пусть в результате прямых измерений физической величины получен ряд ее значений:

x 1 , x 2 , ... x n .

Зная этот ряд чисел, нужно указать значение, наиболее близкое к истинному значению измеряемой величины, и найти величину случайной погрешности. Эту задачу решают на основе теории вероятностей, подробное изложение которой выходит за рамки нашего курса.

Наиболее вероятным значением измеряемой физической величины (близким к истинному) считают среднее арифметическое

. (1)

Здесь x i – результат i–го измерения; n – число измерений. Случайная ошибка измерения может быть оценена величиной абсолютной погрешности D x, которую вычисляют по формуле

, (2)

где t(a ,n) – коэффициент Стьюдента, зависящий от числа измерений n и доверительной вероятности a . Значение доверительной вероятности a задает сам экспериментатор.

Вероятностью случайного события называется отношение числа случаев, благоприятного для данного события, к общему числу равновозможных случаев. Вероятность достоверного события равна 1, а невозможного - 0.

Значение коэффициента Стьюдента, соответствующее заданной доверительной вероятности a и определенному числу измерений n, находят по табл. 1.

Таблица 1

Число

измерений n

Доверительная вероятность a

0,95

0,98

1,38

12,7

31,8

1,06

0,98

0,94

0,92

0,90

0,90

0,90

0,88

0,84

Из табл. 1 видно, что величина коэффициента Стьюдента и случайная погрешность измерения тем меньше, чем больше n и меньше a . Практически выбирают a =0,95. Однако простое увеличение числа измерений не может свести общую погрешность к нулю, так как любой измерительный прибор дает погрешность.

Поясним смысл терминов абсолютная погрешность D x и доверительная вероятность a , используя числовую ось. Пусть среднее значение измеряемой величины (рис. 1), а вычисленная абсолютная погрешность D x. Отложим D x от справа и слева. Полученный числовой интервал от (- D x) до (+ D x) называется доверительным интервалом . Внутри этого доверительного интервала находится истинное значение измеряемой величины x.

Рис.1

Если измерения той же величины повторить теми же приборами в тех же условиях, то истинное значение измеряемой величины x ист попадет в этот же доверительный интервал, но попадание будет не достоверным, а с вероятностью a .

Вычислив величину абсолютной погрешности D x по формуле (2), истинное значение x измеряемой физической величины можно записать в виде x= ±D x.

Для оценки точности измерения физической величины подсчитывают относительную погрешность , которую обычно выражают в процентах,

. (3)

Таким образом, при обработке результатов прямых измерений необходимо проделать следующее:

1. Провести измерения n раз.

2. Вычислить среднее арифметическое значение по формуле (1).

3. Задать доверительную вероятность a (обычно берут a =0.95).

4. По таблице 1 найти коэффициент Стьюдента, соответствующий заданной доверительной вероятности a и числу измерений n.

5. Вычислить абсолютную погрешность по формуле (2) и сравнить ее с аппаратурной. Для дальнейших вычислений взять ту из них, которая больше.

6. По формуле (3) вычислить относительную ошибку e .

7. Записать окончательный результат

x= ±D x. с указанием относительной погрешности e и доверительной вероятности a .

Обработка результатов косвенных измерений

Пусть искомая физическая величина y связана с другими величинами x 1 , x 2 , ... x k некоторой функциональной зависимостью

Y=f(x 1 , x 2 , ... x k) (4)

Среди величин x 1 , x 2 , ... x k имеются величины, полученные при прямых измерениях, и табличные данные. Требуется определить абсолютную D y и относительную e погрешности величины y.

В большинстве случаев проще сначала вычислить относительную погрешность, а затем – абсолютную. Из теории вероятностей относительная погрешность косвенного измерения

. (5)

Здесь , где - частная производная функции по переменной x i, при вычислении которой все величины, кроме x i , считаются постоянными; D x i – абсолютная погрешность величины x i . Если x i получена в результате прямых измерений, то ее среднее значение и абсолютную погрешность D x вычисляют по формулам (1) и (2). Для всех измеренных величин x i задается одинаковая доверительная вероятность a . Если какие-либо из слагаемых, возводимых в квадрат, в выражении (5) меньше на порядок (в 10 раз) других слагаемых, то ими можно пренебречь. Это нужно учитывать при выборе табличных величин (p , g и др.), входящих в формулу относительной погрешности. Их значение надо выбрать такими, чтобы их относительная погрешность была на порядок меньше наибольшей относительной погрешности.

Запишем конечный результат:

y= ±D y.

Здесь – среднее значение косвенного измерения, полученное по формуле (4) при подстановке в нее средних величин x i ; D y= e .

Обычно в реальных измерениях присутствуют и случайные и систематические (аппаратурные) погрешности. Если вычисленная случайная погрешность прямых измерений равна нулю или меньше аппаратурной в два и большее число раз, то при вычислении погрешности косвенных измерений в расчет должна приниматься аппаратурная погрешность. Если эти погрешности отличаются меньше, чем в два раза, то абсолютная погрешность вычисляется по формуле

.

Рассмотрим пример. Пусть необходимо вычислить объем цилиндра:

. (6)

Здесь D – диаметр цилиндра, H – его высота, измеренная штангенциркулем с ценой деления 0.1 мм. В результате многократных измерений найдем средние значения =10.0 мм и =40.0 мм. Относительную погрешность косвенного измерения объема цилиндра определяем по формуле

, (7)

где D D и D H – абсолютные ошибки прямых измерений диаметра и высоты. Их величины рассчитываем по формуле (2): D D=0.01 мм; D H=0.13 мм. Сравним вычисленные ошибки с аппаратурной, равной цене деления штангенциркуля. D D<0.1, поэтому в формуле (7) подставим вместо D D не 0.01 мм, а 0.1 мм.

Значение p нужно выбрать таким, чтобы относительной ошибкой Dp / p в формуле (7) можно было пренебречь. Из анализа измеренных величин и вычисленных абсолютных ошибок D D и D H видно, что наибольший вклад в относительную ошибку измерения объема вносит ошибка измерения высоты. Вычисление относительной ошибки высоты дает e H =0.01. Следовательно, значение p нужно взять 3.14. В этом случае Dp / p » 0.001 (Dp =3.142-3.14=0.002).

В абсолютной погрешности оставляют одну значащую цифру.

Примечания.

1. Если измерения производят один раз или результаты многократных измерений одинаковы, то за абсолютную погрешность измерений нужно взять аппаратурную погрешность, которая для большинства используемых приборов равна цене деления прибора (более подробно об аппаратурной погрешности см. в разделе “Измерительные приборы”).

2. Если табличные или экспериментальные данные приводятся без указания погрешности, то абсолютную погрешность таких чисел принимают равной половине порядка последней значащей цифры.

Действия с приближенными числами

Вопрос о различной точности вычисления очень важен, так как завышение точности вычисления приводит к большому объему ненужной работы. Студенты часто вычисляют искомую величину с точностью до пяти и более значащих цифр. Следует понимать, что эта точность излишняя. Нет никакого смысла вести вычисления дальше того предела точности, который обеспечивается точностью определения непосредственно измерявшихся величин. Проведя обработку измерений, часто не подсчитывают ошибки отдельных результатов и судят об ошибке приближенного значения величины, указывая количество верных значащих цифр в этом числе.

Значащими цифрами приближенного числа называются все цифры, кроме нуля, а также нуль в двух случаях:

1) когда он стоит между значащими цифрами (например, в числе 1071 – четыре значащих цифры);

2) когда он стоит в конце числа и когда известно, что единица соответствующего разряда в данном числе не имеется. Пример. В числе 5,20 три значащих цифры, и это означает, что при измерении мы учитывали не только единицы, но и десятые, и сотые, а в числе 5,2 – только две значащих цифры, и это значит, что мы учитывали только целые и десятые.

Приближенные вычисления следует производить с соблюдением следующих правил.

1. При сложении и вычитании в результате сохраняют столько десятичных знаков, сколько их содержится в числе с наименьшим количеством десятичных знаков. Например: 0,8934+3,24+1,188=5,3214 » 5,32. Сумму следует округлить до сотых долей, т.е. принять равной 5,32.

2. При умножении и делении в результате сохраняют столько значащих цифр, сколько их имеет приближенное число с наименьшим количеством значащих цифр. Например, необходимо перемножить 8,632 ´ 2,8 ´ 3,53. Вместо этого выражения следует вычислять

8,6 ´ 2,8 ´ 3,5 » 81.

При вычислении промежуточных результатов сохраняют на одну цифру больше, чем рекомендуют правила (так называемая запасная цифра). В окончательном результате запасная цифра отбрасывается. Для уточнения значения последней значащей цифры результата нужно вычислить за ней цифру. Если она окажется меньше пяти, ее следует просто отбросить, а если пять или больше пяти, то, отбросив ее, следует предыдущую цифру увеличить на единицу. Обычно в абсолютной ошибке оставляют одну значащую цифру, а измеренную величину округляют до того разряда, в котором находится значащая цифра абсолютной ошибки.

3. Результат расчета значений функций x n , , lg(x ) некоторого приближенного числа x должен содержать столько значащих цифр, сколько их имеется в числе x . Например: .

Построение графиков

Результаты, полученные в ходе выполнения лабораторной работы, часто важно и необходимо представить графической зависимостью. Для того, чтобы построить график, нужно на основании проделанных измерений составить таблицу, в которой каждому значению одной из величин соответствует определенное значение другой.

Графики выполняют на миллиметровой бумаге. При построении графика значения независимой переменной следует откладывать на оси абсцисс, а значения функции – на оси ординат. Около каждой оси нужно написать обозначение изображаемой величины и указать, в каких единицах она измеряется (рис. 2).

Рис.2

Для правильного построения графика важным является выбор масштаба: кривая занимает весь лист, и размеры графика по длине и высоте получаются приблизительно одинаковыми. Масштаб должен быть простым. Проще всего, если единица измеренной величины (0,1;10;100 и т.д.) соответствует 1, 2 или 5 см. Следует иметь в виду, что пересечение координатных осей не обязательно должно совпадать с нулевыми значениями откладываемых величин (рис. 2).

Каждое полученное экспериментальное значение наносится на график достаточно заметным образом: точкой, крестиком и т.д.

Погрешности указывают для измеряемых величин в виде отрезков длиной в доверительный интервал, в центре которых расположены экспериментальные точки. Так как указание погрешностей загромождает график, то делается это лишь тогда, когда информация о погрешностях действительно нужна: при построении кривой по экспериментальным точкам, при определении ошибок с помощью графика, при сравнении экспериментальных данных с теоретической кривой (рисунок 2). Часто достаточно указать погрешность для одной или нескольких точек.

Через экспериментальные точки необходимо проводить плавную кривую. Нередко экспериментальные точки соединяют простой ломаной линией. Тем самым как бы указывается, что величины каким-то скачкообразным образом зависят друг от друга. А это является маловероятным. Кривая должна быть плавной и может проходить не через отмеченные точки, а близко к ним так, чтобы эти точки находились по обе стороны кривой на одинаковом от нее расстоянии. Если какая-либо точка сильно выпадает из графика, то это измерение следует повторить. Поэтому желательно строить график непосредственно во время опыта. Тогда график может служить для контроля и улучшения наблюдений.

ИЗМЕРИТЕЛЬНЫЕ ПРИБОРЫ И УЧЕТ ИХ ПОГРЕШНОСТЕЙ

Для прямых измерений физических величин применяют измерительные приборы. Любые измерительные приборы не дают истинного значения измеряемой величины. Это связано, во-первых, с тем, что невозможно точно отсчитать по шкале прибора измеряемую величину, во-вторых, с неточностью изготовления измерительных приборов. Для учета первого фактора вводится погрешность отсчета Δx o , для второго - допускаемая погрешность Δx д . Сумма этих погрешностей образует аппаратурную или абсолютную погрешность прибора Δx :

.

Допускаемую погрешность нормируют государственными стандартами и указывают в паспорте или описании прибора.

Погрешность отсчета обычно берут равной половине цены деления прибора, но для некоторых приборов (секундомер, барометр-анероид) - равной цене деления прибора (так как положение стрелки этих приборов изменяется скачками на одно деление) и даже нескольким делениям шкалы, если условия опыта не позволяют уверенно отсчитать до одного деления (например, при толстом указателе или плохом освещении). Таким образом, погрешность отсчета устанавливает сам экспериментатор, реально отражая условия конкретного опыта.

Если допускаемая погрешность значительно меньше ошибки отсчета, то ее можно не учитывать. Обычно абсолютная погрешность прибора берется равной цене деления шкалы прибора.

Измерительные линейки обычно имеют миллиметровые деления. Для измерения рекомендуется применять стальные или чертежные линейки со скосом. Допускаемая погрешность таких линеек составляет 0,1 мм и ее можно не учитывать, так как она значительно меньше погрешности отсчета, равной ± 0,5 мм. Допускаемая погрешность деревянных и пластмассовых линеек ± 1 мм.

Допускаемая погрешность измерения микрометра зависит от верхнего предела измерения и может составлять ± (3–4) мкм (для микрометров с диапазоном измерения 0–25 мм). За погрешность отсчета принимают половину цены деления. Таким образом, абсолютную погрешность микрометра можно брать равно цене деления, т.е. 0,01 мм.

При взвешивании допускаемая погрешность технических весов зависит от нагрузки и составляет при нагрузке от 20 до 200 г – 50 мг, при нагрузке меньше 20 г – 25 мг.

Погрешность цифровых приборов определяется по классу точности.

а) Погрешности измерений.

Количественная сторона процессов и явлений в любом эксперименте изучается с помощью измерений, которые делятся на прямые и косвенные.

Прямым называется такое измерение, при котором значение, интересующее экспериментатора величины находятся непосредственно из отсчета по прибору.

Косвенное - это измерение, при котором значение величины находится как функция других величин. Например, сопротивление резистора определяют по напряжению и току (R=).

Измеренное значение х изм. некоторой физической величиных обычно отличается от ее истинного значениях ист.. Отклонение результата, полученного на опыте, от истинного значения, т.е. разностьх изм. –х ист. = ∆х – называется абсолютной ошибкой измерения, а
– относительной ошибкой (погрешностью) измерения. Погрешности или ошибки делятся на систематические, случайные и промахи.

Систематическими ошибками называются такие ошибки, величина и знак которых от опыта к опыту сохраняется или изменяется закономерно. Они искажают результат измерений в одну сторону – либо завышая, либо занижая его. Подобные ошибки вызываются постоянно действующими причинами, односторонне влияющие на результат измерений (неисправность или малая точность прибора).

Ошибки, величина и знак которых непредсказуемым образом изменяются от опыта к опыту, называются случайными. Такие ошибки возникают, например, при взвешивании из-за колебаний установки, неодинакового влияния трения, температуры, влажности и т.д. Случайные ошибки возникают и из-за несовершенства или дефекта органов чувств экспериментатора.

Случайные погрешности исключить опытным путем нельзя. Их влияние на результат измерения может быть оценено с помощью математических методов статистики (малые выборки).

Промахами или грубыми погрешностями называются погрешности, существенно превышающие систематические и случайные погрешности. Наблюдения, содержащие промахи отбрасываются как недостоверные.

б) Обработка результатов непосредственных измерений.

Для надежности оценки случайных погрешностей необходимо выполнить достаточно большое количество измерений п . Допустим, что в результате непосредственных измерений получены результатых 1 ,х 2 ,х 3 , …,х п . Наиболее вероятное значение определяется как среднее арифметическое, которое при большом числе измерений совпадает с истинным значением:
.

Затем определяют среднюю квадратичную ошибку отдельного измерения:
.

При этом можно оценить наибольшую среднюю квадратичную ошибку отдельного измерения: S наиб. = 3S.

Следующий этап заключается в определении средней квадратичной ошибки среднего арифметического:

.

Ширина доверительного интервала около среднего значения измеряемой величины будет определяться поабсолютной погрешности среднего арифметического:
, гдеt α , n – так называемый коэффициент Стьюдента для числа наблюденийп и доверительной вероятности α (табличная величина). Обычно доверительная вероятность в условиях учебной лаборатории выбирается 0,95 или 95%. Это значит, что при многократном повторении опыта в одних и тех же условиях, ошибки, в 95 случаях из 100 не превысят значения
. Интервальной оценкой измеряемой величиныxбудет доверительный интервал
, в который попадает её истинное значение с заданной вероятностью α. Результат измерения записывается:
.

Эту запись можно понимать как неравенство:.

Относительная погрешность:
Е ≤ 5% в условиях учебной лаборатории.

в) Обработка результатов косвенных измерений.

Если величину у измеряют косвенным методом, т.е. она является функцией п независимых величинх 1 ,х 2 , …,х п : у =f(х 1 ,х 2 , …,х п ), а значит
. Средняя квадратичная ошибка среднего арифметического определяется по формуле:

,

где частные производные вычисляются для средних значений
вычисляется по формуле средней квадратичной ошибки для непосредственного измерения. Доверительная вероятность для всех погрешностей, связанных с аргументамих i функции у задается одинаковый (Р = 0,95), такой же она задается и для у. Абсолютная погрешность
среднего значенияопределяется по формуле:
. Тогда
или. Относительная погрешностьбудет равна Е =
≤5%.

Порядок обработки результатов прямых измерений

1. Перед обработкой результатов измерений крайне важно задать значение доверительной вероятности α (обычно 0,9 или 0,95).

2. Проанализировать таблицу записи результатов и выявить возможные промахи. Результаты, содержащие промахи, следует отбросить.

3. Вычислить среднее арифметическое значение серии измерений:

где n – число измерений, A i – результат i -го измерения.

4. Найти погрешности отдельных измерений:

ΔА i = А i – ‹А›. (2)

5. Вычислить среднеквадратичную погрешность среднего арифметического результата серии измерений:

(3)

6. Оценить вклад случайных погрешностей в полуширину доверительного интервала:

ΔА с = t (n, α)S (A ), (4)

где t (n, α) – коэффициент Стьюдента (таблица 1).

Таблица 1 - Коэффициент Стьюдента при различных значениях доверительной вероятности α и различном количестве опытов n

α Количество опытов, n
0,9 6,3 2,9 2,4 2,1 2,0 1,9 1,9 1,9 1,8 1,8 1,8 1,7 1,7 1,7 1,7
0,95 12,7 4,3 3,2 2,8 2,6 2,4 2,4 2,3 2,3 2,2 2,2 2,1 2,1 2,0 2,0
0,99 63,7 9,9 5,8 4,6 4,0 3,7 3,5 3,4 3,3 3,2 3,1 2,9 2,8 2,8 2,7

7. Определить погрешность прибора ΔА пр (абсолютная погрешность прибора указана в паспорте прибора или рассчитывается на основании класса точности прибора).

8. Найти полуширину доверительного интервала (абсолютную погрешность) измеряемой величины по приближенной формуле:

(5)

(Более точные формулы для обработки результатов прямых измерений приведена, к примеру, в ).

9. Записать результат измерений в виде доверительного интервала:

А= (‹A› ± ΔА ) ед.изм., α = … (6)

10. Определить относительную погрешность:

(7)

Порядок обработки результатов прямых измерений - понятие и виды. Классификация и особенности категории "Порядок обработки результатов прямых измерений" 2017, 2018.

В общем случае порядок обработки результатов прямых измерений следующий (предполагается, что систематических ошибок нет).

Случай 1. Число измерений меньше пяти.

1) По формуле (6) находится средний результат x , определяемый как среднее арифметическое от результатов всех измерений, т.е.

2) По формуле (12) вычисляются абсолютные погрешности отдельных измерений

.

3) По формуле (14) определяется средняя абсолютная погрешность

.

4) По формуле (15) вычисляют среднюю относительную погрешность результата измерений

.

5) Записывают окончательный результат по следующей форме:

, при
.

Случай 2 . Число измерений свыше пяти.

1) По формуле (6) находится средний результат

.

2) По формуле (12) определяются абсолютные погрешности отдельных измерений

.

3) По формуле (7) вычисляется средняя квадратическая погрешность единичного измерения

.

4) Вычисляется среднее квадратическое отклонение для среднего значения измеряемой величины по формуле (9).

.

5) Записывается окончательный результат по следующей форме

.

Иногда случайные погрешности измерений могут оказаться меньше той величины, которую в состоянии зарегистрировать измерительный прибор (инструмент). В этом случае при любом числе измерений получается один и тот же результат. В подобных случаях в качестве средней абсолютной погрешности
принимают половину цены деления шкалы прибора (инструмента). Эту величину иногда называют предельной или приборной погрешностью и обозначают
(для нониусных приборов и секундомера
равна точности прибора).

Оценка достоверности результатов измерений

В любом эксперименте число измерений физической величины всегда по тем или иным причинам ограничено. В связи с этим может быть поставлена задача оценить достоверность полученного результата. Иными словами, определить, с какой вероятностью можно утверждать, что допущенная при этом оши­бка не превосходит наперед заданную величину ε. Упомянутую вероятность принято называть доверительной вероятностью. Обозначим её буквой.

Может быть поставлена и обратная задача: определить границы интервала
, чтобы с заданной вероятностью можно было утверждать, что истинное значение измерений величины не выйдет за пределы указанного, так называемого доверительного интервала.

Доверительный интервал характеризует точность полученного результата, а доверительная вероятность - его надёжность. Методы решения этих двух групп задач имеются и особенно подробно разработаны для случая, когда погрешности измерений распределены по нормальному закону. Теория ве­роятностей даёт также методы для определения числа опытов (повторных измерений), при которых обеспечивается заданная точность и надёжность ожидаемого результата. В данной работе эти методы не рассматриваются (ограничимся только их упоминанием), так как при выполнении лабораторных работ подобные задачи обычно не ставятся.

Особый интерес, однако, представляет случай оценки достоверности результата измерений физических величин при весьма малом числе повторных измерений. Например,
. Это именно тот случай, с которым мы часто встречаемся при выполнении лабораторных работ по физике. При решении указанного рода задач рекомендуется использовать метод, в основе которого лежит распределение (закон) Стьюдента.

Для удобства практического применения рассматриваемого метода имеются таблицы, с помощью которых можно определить доверительный интервал
, соответствующий заданной доверительной вероятности или решить обратную задачу.

Ниже приведены те части упомянутых таблиц, которые могут потребоваться при оценке результатов измерений на лабораторных занятиях.

Пусть, например, произведено равноточных (в одинаковых условиях) измерений некоторой физической величины и вычислено её среднее значение . Требуется найти доверительный интервал , соответствующий заданной доверительной вероятности . Задача в общем виде решается так.

По формуле с учётом (7) вычисляют

Затем для заданных значений n и находят по таблице (табл. 2) величину . Искомое значение вычисляется на основе формулы

(16)

При решении обратной задачи вначале вычисляют по формуле (16) параметр. Искомое значение доверительной вероятности берётся из таблицы (табл. 3) для заданного числа и вычисленного параметра .

Таблица 2. Значение параметра при заданных числе опытов

и доверительной вероятности

Таблица 3 Значение доверительной вероятности при заданном числе опытов n и параметре ε