Ремонт Стены Уход

Основные положения теории химического строения А. Теория строения органических соединений А.М

Созданная А.М. Бутлеровым в 60-х годах XIX века теория химического строения органических соединений внесла необходимую ясность в причины многообразия органических соединений, вскрыла взаимосвязь между строением и свойствами этих веществ, позволила объяснить свойства уже известных и предсказать свойства ещё не открытых органических соединений.

Открытия в области органической химии (четырёхвалентность углерода, способность образования длинных цепочек) позволили Бутлерову в 1861 году сформулировать основные поколения теории:

1) Атомы в молекулах соединяются согласно их валентности (углерод-IV, кислород-II, водород-I), последовательность соединения атомов отражается структурными формулами.

2) Свойства веществ зависят не только от химического состава, но и от порядка соединения атомов в молекуле (химическое строение). Существуют изомеры , то есть вещества, имеющие одинаковый количественный и качественный состав, но разное строение, и, следовательно, разные свойства.

C 2 H 6 O: CH 3 CH 2 OH – этиловый спирт и CH 3 OCH 3 – диметиловый эфир

C 3 H 6 – пропен и циклопропан - CH 2 =CH−CH 3

3) Атомы взаимно влияют друг на друга, это следствие различной электроотрицательности атомов, образующих молекулы (O>N>C>H), и эти элементы оказывают различное влияние на смещение общих электронных пар.

4) По строению молекулы органического вещества можно предсказать его свойства, а по свойствам – определить строение.

Дальнейшее развитие ТСОС получила после установления строения атома, принятия концепции о типах химических связей, о видах гибридизации, открытие явления пространственной изомерии (стереохимия).


Билет №7 (2)

Электролиз как окислительно-восстановительный процесс. Электролиз расплавов и растворов на примере хлорида натрия. Практическое применение электролиза.

Электролиз - это окислительно-восстановительный процесс, протекающий на электродах при прохождении постоянного электрического тока через расплав или раствор электролита

Сущность электролиза состоит в осуществлении за счет электрической энергии хим. Реакции- восстановления на катоде и окисления на аноде.

Катод(-) отдает электроны катионам, а анод(+) принимает электроны от анионов.

Электролиз расплава NaCl

NaCl-―> Na + +Cl -

K(-): Na + +1e-―>Na 0 | 2 проц. восстановления

A(+) :2Cl-2e-―>Cl 2 0 | 1 проц. окисления

2Na + +2Cl - -―>2Na+Cl 2

Электролиз водного раствора NaCl

В электролизе раствора NaC| в воде участвуют ионы Na + и Cl - , а также молекулы воды. При прохождении тока катионы Na + движутся к катоду, а анионы Cl - - к аноду. Но на катоде вместо ионов Na восстанавливаться молекулы воды:

2H 2 O + 2e-―> H 2 +2OH -

а на аноде окисляются хлорид-ионы:

2Cl - -2e-―>Cl 2

В итоге на катоде-водород, на аноде-хлор, а в растворе накапливается NaOH

В ионной форме: 2H 2 O+2e-―>H 2 +2OH-

2Cl - -2e-―>Cl 2

электролиз

2H 2 O+2Cl - -―>H 2 +Cl 2 +2OH -

электролиз

В молекулярной форме: 2H 2 O+2NaCl-―> 2NaOH+H 2 +Cl 2

Применение электролиза:

1)Защита металлов от коррозии

2)Получение активных металлов (натрия, калия, щелочно-земельных и др.)

3)Очистка некоторых металлов от примесей (электрическое рафинирование)

Билет №8 (1)


Похожая информация:

  1. A) Теория познания - наука, изучающая формы, способы и приемы возникновения и закономерности развития знания, отношение его к действительности, критерии его истинности.

Первой возникла в начале XIX в. теория радикалов (Ж. Гей-Люссак, Ф. Велер, Ю. Либих). Радикалами были названы группы атомов, переходящие без изменения при химических реакциях из одного соединения в другое. Такое понятие о радикалах сохранилось, но большинство других положений теории радикалов оказались неправильными.

Согласно теории типов (Ш. Жерар) все органические вещества можно разделить на типы, соответс­твующие определенным неорганическим веществам. Например, спирты R-OH и простые эфиры R-O-R рассматривались как представители типа воды H-OH, в которой атомы водорода замещены радикалами. Теория типов создала классификацию органических веществ, некоторые принципы которой применяются в настоящее время.

Современная теория строения органических соединений создана выдающимся русским учёным А.М. Бутлеровым.

Основные положения теории строения органических соединений а.М. Бутлерова

1. Атомы в молекуле располагаются в определенной последовательности согласно их валентности. Валентность атома углерода в органических соединениях равна четырем.

2. Свойства веществ зависят не только от того, какие атомы и в каких количествах входят в состав молекулы, но и от того, в каком порядке они соединены между собой.

3. Атомы или группы атомов, входящих в состав молекулы, взаимно влияют друг на друга, от чего зависят химическая активность и реакционная способность молекул.

4. Изучение свойств веществ позволяет определить их химичес­кое строение.

Взаимное влияние соседних атомов в молекулах является важнейшим свойством органических соединений. Это влияние передается или по цепи простых связей или по цепи сопряженных (чередующихся) простых и двойных связей.

Классификация органических соединений основана на анализе двух аспектов строения молекул – строения углеродного скелета и наличия функциональных групп.

Органические соединения

Углеводороды Гетероциклические соединения

Предель- Непре- Арома-

ные дельные тические

Алифатические Карбоциклические

Предельные Непредельные Предельные Непредельные Ароматические

(Алканы) (Циклоалканы) (Арены)

С п Н 2 п +2 С п Н 2 п С п Н 2 п -6

алкены полиены и алкины

С п Н 2 п полиины С п Н 2 п -2

Рис. 1. Классификация органических соединений по строению углеродного скелета

Классы производных углеводородов по наличию функциональных групп:

Галогенопроизводные R–Гал: СН 3 СН 2 Cl (хлорэтан), С 6 Н 5 Br (бромбензол);

Спирты и фенолы R–ОН: СН 3 СН 2 ОН (этанол), С 6 Н 5 ОН (фенол);

Тиолы R–SH: СН 3 СН 2 SН (этантиол), С 6 Н 5 SН (тиофенол);

Эфиры простые R–О–R: СН 3 СН 2 –О–СН 2 СН 3 (диэтиловый эфир),

сложные R–СО–О–R: СН 3 СН 2 СООСН 2 СН 3 (этиловый эфир уксусной кислоты);

Карбонильные соединения: альдегиды R–СНО:

кетоны R–СО–R: СН 3 СОСН 3 (пропанон), С 6 Н 5 СОСН 3 (метилфенилкетон);

Карбоновые кислоты R-СООН: (уксусная кислота), (бензойная кислота)

Сульфокислоты R–SО 3 Н: СН 3 SО 3 Н (метансульфокислота), С 6 Н 5 SО 3 Н (бензолсульфокислота)

Амины R–NH 2: СН 3 СН 2 NH 2 (этиламин), СН 3 NHСН 3 (диметиламин), С 6 Н 5 NH 2 (анилин);

Нитросоединения R–NO 2 СН 3 СН 2 NО 2 (нитроэтан), С 6 Н 5 NО 2 (нитробензол);

Металлорганические (элементорганические) соединения: СН 3 СН 2 Nа (этилнатрий).

Ряд сходных по строению соединений, обладающих близ­кими химическими свойствами, в котором отдельные члены ряда отли­чаются друг от друга лишь количеством групп -СН 2 -, называется гомологическим рядом, а группа -СН 2 - гомологической разностью. У членов гомологического ряда подавляющее большинство реакций протекает одинаково (исключение составляют только первые члены рядов). Следовательно, зная химические реак­ции лишь одного члена ряда, можно с большой степенью вероятности утверждать, что такого же типа превращения протекают и с осталь­ными членами гомологического ряда.

Для любого гомологического ряда может быть выведена общая формула, отражающая соотношение между атомами углерода и водо­рода у членов этого ряда; такая формула называется общей формулой гомологического ряда. Так, С п Н 2 п +2 – формула алканов, С п Н 2 п +1 ОН – алифатических одноатомных спиртов.

Номенклатура органических соединений: тривиальная, рациональная и систематическая номенклатура. Тривиальная номенклатура представляет собой совокупность исторически сложившихся названий. Так, по названию сразу понятно, откуда были выделены яблочная, янтарная или лимонная кислота, каким способом была получена пировиноградная кислота (пиролиз виноградной кислоты), знатоки греческого языка легко догадаются, что уксусная кислота – это что-то кислое, а глицерин – сладкое. По мере синтеза новых органических соединений и развития теории их строения создавались другие номенклатуры, отражающие строение соединения (его принадлежность к определённому классу).

Рациональная номенклатура строит название соединения на основании структуры более простого соединения (первого члена гомологического ряда). СН 3 ОН – карбинол, СН 3 СН 2 ОН – метилкарбинол, СН 3 СН(ОН) СН 3 – диметилкарбинол и т.д.

Номенклатура ИЮПАК (систематическая номенклатура). По номенклатуре ИЮПАК (международный союз по теоретической и прикладной химии), названия углеводородов и их функциональных производных базируются на названии соответствующего углеводорода с добавлением префиксов и суффиксов, присущих данному гомологическому ряду.

Чтобы правильно (и однозначно) назвать органическое соединение по систематической номенклатуре, надо:

1) выбрать в качестве основного углеродного скелета наиболее длинную последовательность углеродных атомов (родоначальную структуру) и дать её название, обращая внимание на степень ненасыщенности соединения;

2) выявить все имеющиеся в соединении функциональные группы;

3) установить, какая группа является старшей (см. таблицу), название этой группы отражается в названии соединения в виде суфикса и его ставят в конце названия соединения; все остальные группы дают в названии в виде приставок;

4) пронумеровать углеродные атомы основной цепи, придавая старшей группе наименьший из номеров;

5) перечислить приставки в алфавитном порядке (при этом умножающие приставки ди-, три-, тетра- и т.д. не учитываются);

6) составить полное название соединения.

Класс соединений

Формула функциональной группы

Суффикс или окончание

Карбоновые кислоты

Карбокси-

Овая кислота

Сульфокислоты

Сульфоновая кислота

Альдегиды

Гидрокси-

Меркапто-

С≡≡С

Галогенопроизводные

Br, I, F, Cl

Бром-, иод-, фтор-, хлор-

бромид, -иодид, -фторид, -хлорид

Нитросоединения

При этом необходимо помнить:

В названиях спиртов, альдегидов, кетонов, карбоновых кислот, амидов, нитрилов, галогенангидридов суффикс, определяющий класс, следует за суффиксом степени ненасыщенности: например, 2-бутеналь;

Соединения, содержащие другие функциональные группы, называются как производные углеводородов. Названия этих функциональных групп ставятся в качестве приставок перед названием родоначального углеводорода: например, 1-хлорпропан.

Названия кислотных функциональных групп, таких, как группа сульфокислоты или фосфиновой кислоты, помещают после названия углеводородного скелета: например, бензолсульфокислота.

Производные альдегидов и кетонов часто называют по имени исходного карбонильного соединения.

Эфиры карбоновых кислот называются как производные родоначальных кислот. Окончание –овая кислота заменяется на –оат: например, метилпропионат – метиловый эфир пропановой кислоты.

Для того чтобы обозначить, что заместитель связан с атомом азота родоначальной структуры, используют прописную букву N перед названием заместителя: N-метиланилин.

Т.е. начинать надо с названия родоначальной структуры, для чего абсолютно необходимо знать наизусть названия первых 10 членов гомологического ряда алканов (метан, этан, пропан, бутан, пентан, гексан, гептан, октан, нонан, декан). Также надо знать названия образующихся из них радикалов – при этом окончание –ан меняется на –ил.

Рассмотрим соединение, входящее в состав препаратов, применяемых для лечения заболеваний глаз:

СН 3 – С(СН 3) = СН – СН 2 – СН 2 – С(СН 3) = СН – СНО

Основная родоначальная структура – цепь из 8 атомов углерода, включающая альдегидную группу и обе двойные связи. Восемь атомов углерода – октан. Но есть 2 двойные связи – между вторым и третьим атомами и между шестым и седьмым. Одна двойная связь – окончание –ан надо заместить на –ен, двойных связей 2, значит на –диен, т.е. октадиен, а в начале указываем их положение, называя атомы с меньшими номерами – 2,6-октадиен. С родоначальной структурой и непредельностью разобрались.

Но в соединении есть альдегидная группа, это не углеводород, а альдегид, поэтому добавляем суффикс –аль, без номера, он всегда первый – 2,6-октадиеналь.

Ещё 2 заместителя – метильные радикалы у 3-го и 7-го атомов. Значит, в итоге получим: 3,7-диметил - 2,6-октадиеналь.

Слайд 1>

Задачи лекции:

  • Образовательные:
    • формировать понятия о сущности теории химического строения органических веществ, опираясь на знания учащихся об электронном строении атомов элементов, их положении в Периодической системе Д.И. Менделеева, о степени окисления, природе химической связи и о других главнейших теоретических положениях:
      • последовательность расположения атомов углерода в цепи,
      • взаимное влияние атомов в молекуле,
      • зависимость свойств органических веществ от структуры молекул;
    • сформировать представление о ходе развития теорий в органической химии;
    • усвоить понятия: изомеры и изомерия;
    • разъяснить смысл структурных формул орг.веществ и их преимуществ перед молекулярными;
    • показать необходимость и предпосылки создания теории химического строения;
    • продолжить формирование навыков составления конспекта.
  • Развивающие :
    • развивать мыслительные приемы анализа, сравнения, обобщения;
    • развивать абстрактное мышление;
    • тренировать внимание учащихся при восприятии большого по объему материала;
    • выробатывать умения анализировать информацию и выделять наиболее важный материал.
  • Воспитательные:
    • с целью патриотического и интернационального воспитания привести учащимся исторические сведения о жизни и деятельности ученых.

ХОД УРОКА

1. Организацонная часть

– Приветствие
– Подготовка учащихся к уроку
– Получение сведений об отсутствующих.

2. Изучение нового

План лекции: <Приложение 1 . Слайд 2>

I. Доструктурные теории:
– витализм;
– теория радикалов;
– теория типов.
II. Краткая справка о состоянии химической науки к 60-м годам XIX столетия. Условия создания теории химического строения веществ:
– необходимость создания теории;
– предпосылки теории химического строения.
III. Сущность теории химического строения органических веществ А.М. Бутлерова. Понятие об изомерии и изомерах.
IV. Значение теории химического строения органических веществ А.М. Бутлерова и ее развитие.

3. Задание на дом: конспект, п. 2.

4. Лекция

I. Знания об органических веществах накапливались постепенно еще с глубокой древности, но как самостоятельная наука органическая химия возникла лишь в начале XIX века. Оформление самостоятельности орг.химии связано с именем шведского ученого Я. Берцелиуса <Приложение 1 . Слайд 3>. В 1808-1812 г.г. он издал свое большое руководство по химии, в котором первоначально намеревался рассмотреть наряду с минеральными также и вещества животного и растительного происхождения. Но часть учебника, посвященная орг.веществам, появилась лишь в 1827 г.
Самое существенное различие между веществами неорганическими и органическими Я. Берцелиус видел в том, что первые могут быть получены в лабораториях синтетическим путем, в то время как вторые якобы образуются лишь в живых организмах под действием некой «жизненной силы» – химического синонима «души», «духа», «божественного происхождения» живых организмов и составляющих их органических веществ.
Теория, объяснявшая образование орг.соединений вмешательством «жизненной силы», получила название витализма. В течение некоторого времени она пользовалась популярностью. В лаборатории удавалось синтезировать лишь самые простые углеродсодержащие вещества, такие как углекислый газ – СО 2 , карбид кальция – CaC 2 , цианид калия – KCN.
Только в 1828 г. немецкий ученый Вёлер <Приложение 1 . Слайд 4> сумел получить органическое вещество мочевину из неорганической соли – цианата аммония – NH 4 CNO.
NH 4 CNO –– t –> CO(NH 2) 2
В 1854 г. французский ученый Бертло <Приложение 1 . Слайд 5>получил триглицерид. Это и повлекло за собой необходимость изменения определения органической химии.
Ученые пытались на основании состава и свойств разгадать природу молекул органических веществ, стремились создать систему, которая позволила бы связать воедино разрозненные факты, накопившиеся к началу XIX века.
Первая попытка создания теории, стремившейся обобщить имевшиеся об орг.веществах данные, связана с именем французского химика Ж.Дюма <Приложение 1 . Слайд 6>. Это была попытка рассмотреть с единой точки зрения довольно большую группу орг.соединений, которые сегодня мы называли бы производными этилена. Орг.соединения оказывались производными некоторого радикала C 2 H 4 – этерина:
C 2 H 4 * HCl – хлористый этил (солянокислый этерин)
Заложенная в этой теории идея – подход к орг.веществу как состоящему из 2-х частей – легла в последствии в основу, более широкой теории радикалов (Я. Берцелиус, Ю.Либих, Ф. Велер). Эта теория основана на представлении о «дуалистическом строении» веществ. Я. Берцелиус писал: «каждое орг.вещество состоит из 2-х составных частей, несущих противоположный электрический заряд». Одной из этих составных частей, а именно частью электроотрицательной, Я.Берцелиус считал кислород, остальная же часть, собственно органическая, должна была составлять электроположительный радикал.

Основные положения теории радикалов: <Приложение 1 . Слайд 7>

– в состав органических веществ входят радикалы, несущие на себе положительный заряд;
– радикалы всегда постоянны, не подвергаются изменениям, они без изменений переходят из одной молекулы в другую;
– радикалы могут существовать в свободном виде.

Постепенно в науке накапливались факты, противоречащие теории радикалов. Так Ж.Дюма провел замещение водорода хлором в углеводородных радикалах. Ученым, приверженцам теории радикалов, казалось невероятным, чтобы хлор, заряженный отрицательно, играл в соединениях роль водорода, заряженного положительно. В 1834 г. Ж. Дюма получил задание расследовать неприятное происшествие во время бала во дворце французского короля: свечи при горении выделяли удушливый дым. Ж.Дюма установил, что воск, из которого делались свечи, фабрикант для отбелки обрабатывал хлором. При этом хлор входил в молекулу воска, заменяя часть содержавшегося в ней водорода. Удушливые пары, перепугавшие королевских гостей, оказались хлороводородом (HCl). В дальнейшем Ж.Дюма получил трихлоруксусную кислоту из уксусной.
Таким образом, электроположительный водород заменялся крайне электроотрицательным элементом хлором, а свойства соединения при этом почти не менялись. Тогда Ж.Дюма сделал вывод, что на место дуалистического подхода должен стать подход к орг.соединению как единому целому.

Теория радикалов была постепенно отвергнута, однако она оставила глубокий след в органической химии: <Приложение 1 . Слайд 8>
– понятие «радикал» прочно вошло в химию;
– верным оказалось утверждение о возможности существования радикалов в свободном виде, о переходе в огромном числе реакций определенных групп атомов из одного соединения в другое.

В 40-х г.г. XIXв. Было положено начало учению о гомологии, позволившему выяснить некоторые отношения между составом и свойствами соединений. Выявлены гомологические ряды, гомологическая разность, что позволило классифицировать органические вещества. Классификация орг.веществ на основе гомологии привела к возникновению теории типов (40-50-е годы XIX в., Ш. Жерар, А.Кекуле и др.) <Приложение 1 . Слайд 9>

Сущность теории типов <Приложение 1 . Слайд 10>

– в основу теории положена аналогия в реакциях между органическими и некоторыми неорганическими веществами, принятыми в качестве типов (типы: водород, вода, аммиак, хлороводород и др.). Замещая в типе вещества атомы водорода на другие группы атомов, ученые предсказали различные производные. Например, замещение атома водорода в молекуле воды на радикал метил приводит к возникновению молекулы спирта. Замещение двух атомов водорода – к появлению молекулы простого эфира <Приложение 1 . Слайд 11>

Ш. Жерар прямо говорил в связи с этим, что формула вещества – это только сокращенная запись его реакций.

Все орг. вещества считали производными простейших неорганических веществ – водорода, хлороводорода, воды, аммиака <Приложение 1 . Слайд 12>

<Приложение 1 . Слайд 13>

– молекулы органических веществ представляют собой систему, состоящую из атомов, порядок соединения которых неизвестен; на свойства соединений влияет совокупность всех атомов молекулы;
– невозможно познать строение вещества, так как молекулы в процессе реакции изменяются. Формула вещества отражает не строение, а реакции, в которые данное вещество. Для каждого вещества можно написать столько рациональных формул, сколько различных видов превращений может испытывать вещество. Теория типов допускала множественность «рациональных формул» для веществ в зависимости от того какие реакции хотят этими формулами выразить.

Теория типов сыграла большую роль в развитии органической химии <Приложение 1 . Слайд 14>

– позволила предсказать и открыть ряд веществ;
– оказала положительное влияние на развитие учения о валентности;
– обратила внимание на изучение химических превращений органических соединений, что позволило глубже изучить свойства веществ, а также свойства предсказываемых соединений;
– создала совершенную для того времени систематизацию органических соединений.

Не следует забывать, что в действительности теории возникали и сменяли друг друга не последовательно, а существовали одновременно. Химики нередко плохо понимали друг друга. Ф.Вёлер в 1835 г. говорил, что «органическая химия в настоящее время может кого угодно свести с ума. Она представляется мне дремучим лесом полным чудесных вещей, огромной чащей без выхода, без конца, куда не осмеливаешься проникнуть…».

Ни одна из этих теорий не стала теорией органической химии в полном смысле слова. Главная причина несостоятельности этих представлений в их идеалистической сущности: внутреннее строение молекул считалось принципиально непознаваемым, а любые рассуждения о нем – шарлатанством.

Нужна была новая теория, которая бы стояла на материалистических позициях. Такой теорией явилась теория химического строения А.М. Бутлерова <Приложение 1 . Слайды 15, 16>, которая создана в 1861 г. Все рациональное и ценное, что было в теориях радикалов и типов, было в дальнейшем ассимилировано теорией химического строения.

Необходимость появления теории диктовалась: <Приложение 1 . Слайд 17>

– возросшими требованиями промышленности к органической химии. Необходимо было обеспечить текстильную промышленность красителями. В целях развития пищевой промышленности требовалось усовершенствовать методы переработки сельскохозяйственных продуктов.
В связи с этими задачами начали разрабатываться новые методы синтеза органических веществ. Однако у ученых возникли серьезные затруднения по научному обоснованию этих синтезов. Так, например, нельзя было объяснить валентность углерода в соединениях с помощью старой теории.
Углерод нам известен как элемент 4-х валентный (Это было доказано экспериментально). Но здесь он как будто только в метане CH 4 сохраняет эту валентность. В этане C 2 H 6 если следовать нашим представлениям, углерод д.б. 3-валентным, а в пропане C 3 H 8 – дробную валентность. (А мы знаем, что валентность должна быть выражена только целыми числами).
Какова же валентность углерода в органических соединениях?

Было непонятно, почему существуют вещества с одинаковым составом, но различными свойствами: С 6 H 12 O 6 – молекулярная формула глюкозы, но такая же формула и фруктозы (сахаристого вещества – составной части мёда).

Доструктурные теории не могли объяснить многообразие органических веществ. (Почему углерод и водород – два элемента, – могут образовывать такое большое число различных соединений?).

Необходимо было систематизировать имеющиеся знания с единой точки зрения и разработать единую химическую символику.

Научно обоснованный ответ на эти вопросы дала теория химического строения органических соединений, созданная русским ученым А.М. Бутлеровым.

Основными предпосылками , подготовившими почву для возникновения теории химического строения были <Приложение 1 . Слайд 18>

– учение о валентности. В 1853 г. Э. Франкланд ввел понятие о валентности, установил валентность для ряда металлов, исследуя металлоорганические соединения. Постепенно понятие валентности было распространено на многие элементы.

Важным открытием для органической химии явилась гипотеза о способности атомов углерода к образованию цепей (А. Кекуле, А. Купер).

Одной из предпосылок была выработка правильного представления об атомах и молекулах. До 2-й половины 50-х г.г. XIXв. Не было общепризнанных критериев для определения понятий: «атом», «молекула», «атомная масса», «молекулярная масса». Только на международном конгрессе химиков в Карлсруэ (1860 г.) были четко определены эти понятия, что предопределило развитие теории валентности, возникновение теории химического строения.

Основные положения теории химического строения А.М. Бутлерова (1861 г.)

А.М. Бутлеров сформулировал важнейшие идеи теории строения органических соединений в виде основных положений, которые можно разделить на 4 группы.<Приложение 1 . Слайд 19>

1. Все атомы, образующие молекулы органических веществ, связаны в определенной последовательности согласно их валентности (т.е. молекула имеет строение).

<Приложение 1 . Слайды 19, 20>

В соответствии с этими представлениями валентность элементов условно изображают черточками, например, в метане CH 4 . <Приложение 1 . Слайд 20>>

Такое схематичное изображение строения молекул называют формулами строения и структурными формулами. Основываясь на положениях о 4-х валентности углерода и способности его атомов образовывать цепи и циклы, структурные формулы орг.веществ можно изобразить так: <Приложение 1 . Слайд 20>

В этих соединениях углерод четырехвалентен. (Черточка символизирует ковалентную связь, пару электронов).

2. Свойства вещества зависят не только от того какие атомы и сколько их входит в состав молекул, но и от порядка соединения атомов в молекулах.(т.е. свойства зависят от строения) <Приложение 1 . Слайд 19>

Данное положение теории строения орг.веществ объяснило, в частности, явление изомерии. Существуют соединения, которые содержат одинаковое число атомов одних и тех же элементов, но связанных в различном порядке. Такие соединения обладают разными свойствами и называются изомерами.
Явление существования веществ с одинаковым составом, но разным строением и свойствами называется изомерией. <Приложение 1 . Слайд 21>

Существование изомеров орг.веществ объясняет их многообразие. Явление изомерии было предсказано и доказано (экспериментально) А.М.Бутлеровым на примере бутана

Так, например, составу С 4 Н 10 отвечают две структурные формулы: <Приложение 1 . Слайд 22>

Разное взаимное расположение атомов углерода в молекулах у/в появляется только с бутана. Число изомеров возрастает с увеличением числа атомов углерода у соответствующего углеводорода, например, у пентана – три изомера, а у декана – семьдесят пять.

3. По свойствам данного вещества можно определить строение его молекулы, а по строению молекулы предвидеть свойства. <Приложение 1 . Слайд 19>

Из курса неорганической химии, известно, что свойства неорганических веществ зависят от строения кристаллических решеток. Отличительные свойства атомов от ионов объясняются их строением. В дальнейшем мы убедимся, что органические вещества с одинаковыми молекулярными формулами, но разным строением отличаются не только по физическим, но и по химическим свойствам.

4. Атомы и группы атомов в молекулах веществ взаимно влияют друг на друга.

<Приложение 1 . Слайд 19>

Как нам уже известно, свойства неорганических соединений, содержащих гидроксогруппы, зависят от того, с какими атомами они связаны – с атомами металлов или неметаллов. Так например, гидроксогруппу содержат как основания, так и кислоты:<Приложение 1 . Слайд 23>

Однако, свойства этих веществ совершенно различны. Причина различного химического характера группы – ОН (в водном растворе) обусловлена влиянием связанных с ней атомов и групп атомов. С возрастанием неметаллических свойств центрального атома ослабляется диссоциация по типу основания и возрастает диссоциация по типу кислоты.

Органические соединения также могут иметь разные свойства, которые зависят от того, с какими атомами или группами атомов связаны гидроксильные группы.

Вопрос о взаимном вливании атомов А.М. Бутлеров подробно разобрал 17 апреля 1879 г. на заседании Русского физико – химического общества. Он говорил, что если с углеродом связаны два разных элемента, например, Cl и H, то «они здесь не зависят один от другого в той степени, как от углерода: между ними нет той зависимости, той связи, какая существует в частице соляной кислоты… Но следует ли из этого, что в соединении CH 2 Cl 2 между водородом и хлором нет никакой зависимости? Я отвечаю на это решительным отрицанием».

В качестве конкретного примера он приводит далее увеличение подвижности хлора при превращении группы CH 2 Cl в COCl и говорит по этому поводу: «Очевидно, что характер находящегося в частице хлора изменился под влиянием кислорода, хотя этот последний и не соединился с хлором непосредственно». <Приложение 1 . Слайд 23>

Вопрос о взаимном влиянии непосредственно не связанных атомов явился основным теоретическим стержнем работ В.В. Морковникова.

В истории человечества известно сравнительно немного ученых, открытия которых имеют всемирное значение. В области органической химии такие заслуги принадлежат А.М. Бутлерову. По значимости теорию А.М. Бутлерова сопоставляют с Периодическим законом.

Теория химического строения А.М. Бутлерова: <Приложение 1 . Слайд 24>

– дала возможность систематизировать органические вещества;
– ответила на все вопросы, возникшие к тому времени в органической химии (см. выше);
– позволила теоретически предвидеть существование неизвестных веществ, найти пути их синтеза.

Прошло почти 140 лет с тех пор, как была создана ТХС органических соединений А.М. Бутлерова но и теперь химики всех стран используют ее в своих работах. Новейшие достижения науки пополняют данную теорию, уточняют и находят все новые подтверждения правильности ее основных идей.

Теория химического строения и сегодня остается фундаментом органической химии.

ТХС органических соединений А.М. Бутлерова внесла существенный вклад в создание общенаучной картины мира, способствовала диалектико – материалистическому пониманию природы:<Приложение 1 . Слайд 25>

закон перехода количественных изменений в качественные можно проследить на примере алканов: <Приложение 1 . Слайд 25>.

Изменяется только количество атомов углерода.

закон единства и борьбы противоположностей прослеживается на явлении изомерии<Приложение 1 . Слайд 26>

Единство – в составе (одинаковый), расположении в пространстве.
Противоположность – в строении и свойствах (разная последовательность расположения атомов).
Эти два вещества сосуществуют вместе.

закон отрицания отрицания – на изомерии.<Приложение 1 . Слайд 27>

Изомеры сосуществуя отрицают друг друга своим существованием.

Разработав теорию, А.М. Бутлеров не считал ее абсолютной и неизменной. Он утверждал, что она должна развиваться. ТХС органических соединений не осталась неизменной. Дальнейшее ее развитие шло, главным образом, в 2-х взаимосвязанных направлениях: <Приложение 1 . Слайд 28>

Стереохимия – учение о пространственном строении молекул.

Учение об электронном строении атомов (позволило понять природу химической связи атомов, сущность взаимного влияния атомов, объяснить причину проявления веществом тех или иных химических свойств).

Крупнейшим событием в развитии органической химии было создание в 1961 г. великим русским ученым А.М. Бутлеровым теории химического строения органических соединений.

До А.М. Бутлерова считалось невозможным познать строение молекулы, т. е. порядок химической связи между атомами. Многие ученые даже отрицали реальность атомов и молекул.

А.М. Бутлеров опроверг это мнение. Он исходил из правильных материалистических и философских представлений о реальности существования атомов и молекул, о возможности познания химической связи атомов в молекуле. Он показал, что строение молекулы можно установить опытным путем, изучая химические превращения вещества. И наоборот, зная строение молекулы, можно вывести химические свойства соединения.

Теория химического строения объясняет многообразие органических соединений. Оно обусловлено способностью четырехвалентного углерода образовывать углеродные цепи и кольца, соединяться с атомами других элементов и наличием изомерии химического строения органических соединений. Эта теория заложила научные основы органической химии и объяснила ее важнейшие закономерности. Основные принципы своей теории А.М. Бутлеров изложил в докладе «О теории химического строения».

Основные положения теории строения сводятся к следующему:

1) в молекулах атомы соединены друг с другом в определенной последовательности в соответствии с их валентностью. Порядок связи атомов называется химическим строением;

2) свойства вещества зависят не только от того, какие атомы и в каком количестве входят в состав его молекулы, но и от того, в каком порядке они соединены между собой, т. е. от химического строения молекулы;

3) атомы или группы атомов, образовавшие молекулу, взаимно влияют друг на друга.

В теории химического строения большое внимание уделяется взаимному влиянию атомов и групп атомов в молекуле.

Химические формулы, в которых изображен порядок соединения атомов в молекулах, называются структурными формулами или формулами строения.

Значение теории химического строения А.М. Бутлерова:

1) является важнейшей частью теоретического фундамента органической химии;

2) по значимости ее можно сопоставить с Периодической системой элементов Д.И. Менделеева;

3) она дала возможность систематизировать огромный практический материал;

4) дала возможность заранее предсказать существование новых веществ, а также указать пути их получения.

Теория химического строения служит руководящей основой во всех исследованиях по органической химии.

5. Изомерия. Электронное строение атомов элементов малых периодов.Химическая связь

Свойства органических веществ зависят не только от их состава, но и от порядка соединения атомов в молекуле.

Изомеры – это вещества, которые имеют одинаковый состав и одинаковую молярную массу, но различное строение молекул, а потому обладающие разными свойствами.

Научное значение теории химического строения:

1) углубляет представления о веществе;

2) указывает путь к познанию внутреннего строения молекул;

3) дает возможность понять накопленные в химии факты; предсказать существование новых веществ и найти пути их синтеза.

Всем этим теория в огромной степени способствовала дальнейшему развитию органической химии и химической промышленности.

Немецкий ученый А. Кекуле высказывал мысль о соединении атомов углерода друг с другом в цепи.

Учение об электронном строении атомов.

Особенности учения об электронном строении атомов: 1) позволило понять природу химической связи атомов; 2) выяснить сущность взаимного влияния атомов.

Состояние электронов в атомах и строение электронных оболочек.

Электронные облака – это области наибольшей вероятности пребывания электрона, которые различаются по своей форме, размерам, направленности в пространстве.

В атоме водорода единственный электрон при своем движении образует отрицательно заряженное облако сферической (шаровидной) формы.

S-электроны – это электроны, образующие сферическое облако.

В атоме водорода имеется один s-электрон.

В атоме гелия – два s-электрона.

Особенности атома гелия: 1) облака одинаковой сферической формы; 2) наибольшая плотность одинаково удалена от ядра; 3) электронные облака совмещаются; 4) образуют общее двухэлектронное облако.

Особенности атома лития: 1) имеет два электронных слоя; 2) имеет облако сферической формы, но по размерам значительно превосходит внутреннее двухэлектронное облако; 3) электрон второго слоя слабее притягивается к ядру, чем первые два; 4) легко захватывается другими атомами в окислительно-восстановительных реакциях; 5) имеет s-электрон.

Особенности атома бериллия: 1) четвертый электрон – s-электрон; 2) сферическое облако совмещается с облаком третьего электрона; 3) имеются два спаренных s-электрона во внутреннем слое и два спаренных s-электрона в наружном.

Чем больше перекрываются электронные облака при соединении атомов, тем больше выделяется энергии и тем прочнее химическая связь.

Основой создания теории химического строения органических соединений А.М. Бутлеровым послужило атомно-молекулярное учение (работы А.Авагадро и С.Канниццаро). Будет неправильным предполагать, что до ее создания в мире ничего не было известно об органических веществах и не предпринимались попытки обоснования строения органических соединений. К 1861 году (год создания А.М. Бутлеровым теории химического строения органических соединений) число известных органических соединений достигало сотен тысяч, а выделение органической химии как самостоятельной науки произошло еще в 1807 году (Й. Берцелиус).

Предпосылки теории строения органических соединений

Широкое изучение органических соединений началось в XVIII веке с работ А.Лавуазье, который показал, что вещества, получаемые из живых организмов, состоят из нескольких элементов – углерода, водорода, кислорода, азота, серы и фосфора. Огромное значение имело введение терминов «радикал» и «изомерия», а также формирование теории радикалов (Л. Гитон де Морво, А. Лавуазье, Ю. Либих, Ж. Дюма, Й. Берцелиус), успехи в синтезе органических соединений (мочевина, анилин, уксусная кислота, жиры, сахароподобные вещества и др.).

Термин «химическое строение», а также основы классической теории химического строения были впервые обнародованы А.М. Бутлеровым 19 сентября 1861 года в его докладе на Съезде немецких естествоиспытателей и врачей в Шпейере.

Основные положения теории строения органических соединений А.М. Бутлерова

1. Атомы, образующие молекулу органического вещества связаны между собой в определенном порядке, причем на связь с друг другом затрачивается по одной или несколько валентностей от каждого атома. Свободных валентностей нет.

Последовательность соединения атомов Бутлеров назвал «химическим строением». Графически связи между атомами обозначаются чертой или точкой (рис. 1).

Рис. 1. Химическое строение молекулы метана: А – структурная формула, Б – электронная формула

2. Свойства органических соединений зависят от химического строения молекул, т.е. свойства органических соединений зависят от порядка соединения атомов в молекуле. Изучив свойства можно изобразить вещество.

Рассмотрим пример: вещество имеют брутто-формулу C 2 H 6 O. Известно, что при взаимодействии этого вещества с натрием выделяется водород, а при действии на него кислоты образуется вода.

C 2 H 6 O + Na = C 2 H 5 ONa + H 2

C 2 H 6 O + HCl = C 2 H 5 Cl + H 2 O

Данному веществу может соответствовать две структурные формулы:

CH 3 -O-CH 3 – ацетон (диметилкетон) и CH 3 -CH 2 -OH – этиловый спирт (этанол),

исходя из химических свойств, характерных для этого вещества делаем вывод, что это этанол.

Изомеры – это вещества, обладающие одинаковым качественным и количественным составом, но различным химическим строением. Выделяют несколько типов изомерии: структурная (линейная, разветвленная, углеродного скелета), геометрическая (цис- и транс- изомерия, характерная для соединений с кратной двойной связью (рис. 2)), оптическая (зеркальная), стерео (пространственная, характерна для веществ, способных по разному располагаться в пространстве (рис. 3)).

Рис. 2. Пример геометрической изомерии

3. На химические свойства органических соединений оказывают влияние и другие атомы, присутствующие в молекуле. Такие группы атомов получили название функциональных групп, за счет того, что их наличие в молекуле вещества придает ему особые химические свойства. Например: -OH (гидроксо-группа), -SH (тио-группа), -CO (карбонильная группа), -COOH (карбоксильная группа). Причем химические свойства органического вещества в меньшей степени зависят от углеводородного скелета, чем от функциональной группы. Именно функциональные группы обеспечивают многообразие органических соединений, за счет чего их классифицируют (спирты, альдегиды, карбоновые кислоты и т.д. К числу функциональных групп иногда относят и углерод-углеродные связи (кратные двойные и тройные). Если в молекуле органического вещества несколько одинаковых функциональных групп, то его называют гомополифунцкиональным (CH 2 (OH)-CH(OH)-CH 2 (OH) – глицерин), если несколько, но разных – гетерополифункциональным (NH 2 -CH(R)-COOH – аминокислоты).


Рис.3. Пример стерео изомерии: а – циклогексан, форма «кресла», б – циклогексан, форма «ванна»

4. Валентность углерода в органических соединениях всегда равна четырем.