Ремонт Стены Уход

Закон кулона позволяет рассчитать. Кулоновская сила является силой притяжения, если знаки зарядов разные и силой отталкивания, если знаки зарядов одинаковые

Два точечных заряда действуют друг на друга с силой, которая обратно пропорциональна квадрату расстояния между ними и прямо пропорциональна произведению их зарядов (без учета знака зарядов)


В различных средах, например в воздухе и в воде, два точечных заряда взаимодействуют с разной силой. Относительная диэлектрическая проницаемость среды характеризуют это различие. Это известная табличная величина . Для воздуха .

Постоянная k определяется как

Направление силы Кулона


Согласно третьему закону Ньютона , силы одной природы возникают попарно, равны по величине, противоположны по направлению. Если взаимодействуют два неодинаковых заряда, сила, с которой больший заряд действует на меньший (В на А) равна силе, с которой меньший действует на больший (А на В).

Интересно, что у различных законов физики есть некоторые общие черты. Вспомним закон тяготения . Сила гравитации также обратно пропорциональны квадрату расстояния, но уже между массами , и невольно возникает мысль, что в этой закономерности таится глубокий смысл. До сих пор никому не удалось представить тяготение и электричество как два разных проявления одной и той же сущности.

Сила и тут изменяется обратно пропорционально квадрату расстояния, но разница в величине электрических сил и сил тяготения поразительна. Пытаясь установить общую природу тяготения и электричества, мы обнаруживаем такое превосходство электрических сил над силами тяготения, что трудно поверить, будто у тех и у других один и тот же источник. Как можно говорить, что одно действует сильнее другого? Ведь все зависит от того, какова масса и каков заряд. Рассуждая о том, насколько сильно действует тяготение, вы не вправе говорить: "Возьмем массу такой-то величины", потому что вы выбираете ее сами. Но если мы возьмем то, что предлагает нам сама Природа (ее собственные числа и меры, которые не имеют ничего общего с нашими дюймами, годами, с нашими мерами), тогда мы сможем сравнивать. Мы возьмем элементарную заряженную частицу, такую, например, как электрон. Две элементарные частицы, два электрона, за счет электрического заряда отталкивают друг друга с силой, обратно пропорциональной квадрату расстояния между ними, а за счет гравитации притягиваются друг к другу опять-таки с силой, обратно пропорциональной квадрату расстояния.

Вопрос: каково отношение силы тяготения к электрической силе? Тяготение относится к электрическому отталкиванию, как единица к числу с 42 нулями. Это вызывает глубочайшее недоумение. Откуда могло взяться такое огромное число?

Люди ищут этот огромный коэффициент в других явлениях природы. Они перебирают всякие большие числа, а если вам нужно большое число, почему не взять, скажем, отношение диаметра Вселенной к диаметру протона - как ни удивительно, это тоже число с 42 нулями. И вот говорят: может быть, этот коэффициент и равен отношению диаметра протона к диаметру Вселенной? Это интересная мысль, но, поскольку Вселенная постепенно расширяется, должна меняться и постоянная тяготения. Хотя эта гипотеза еще не опровергнута, у нас нет никаких свидетельств в ее пользу. Наоборот, некоторые данные говорят о том, что постоянная тяготения не менялась таким образом. Это громадное число по сей день остается загадкой.

Известно, что каждое заряженное тело имеет электрическое поле. Можно также утверждать, что если есть электрическое по-ле, то есть заряженное тело, которому при-надлежит это поле. Итак, если рядом нахо-дятся два заряженных тела с электриче-скими зарядами, то можно сказать, что каж-дое из них находится в электрическом поле соседнего тела. А в таком случае на первое тело будет действовать сила

F 1 = q 1 E 2 ,

где q 1 — заряд первого тела; E 2 — напря-женность поля второго тела. На второе те-ло, соответственно, будет действовать сила

F 2 = q 2 E 1 ,

где q 2 — заряд первого тела; E 1 — напря-женность поля второго тела.

Электрически заряженное те-ло взаимодействует с элект-рическим полем другого заря-женного тела.

Если эти тела небольшие (точечные), то

E 1 = k . q 1 / r 2 ,

E 2 = k . q 2 / r 2 ,

Силы, действующие на каждое из взаимодействующих заря-женных тел, можно рассчи-тать, зная лишь их заряды и расстояние между ними.

Подставим значения напряженности и получим

F 1 = k . q 1 q 2 / r 2 и F 2 = k . q 2 q 1 / r 2 .

Значение каждой силы выражается лишь через значение зарядов каждого тела и рас-стояние между ними. Таким образом, опре-делять силы, действующие на каждое тело, можно, пользуясь лишь знаниями об элект-рических зарядах тел и расстоянии между ними. На этом основании можно сформу-лировать один из фундаментальных законов электродинамики — закона Кулона .

Закон Кулона . Сила, действующая на неподвижное то-чечное тело с электрическим зарядом в поле другого неподвижного точечного тела с элект-рическим зарядом, пропорциональна произве-дению значений их зарядов и обратно пропор-циональна квадрату расстояния между ними.

В общем виде значение силы, о которой идет речь в формулировке закона Кулона , можно записать так:

F = k . q 1 q 2 / r 2 ,

В формуле для расчета силы взаимодей-ствия записаны значения зарядов обоих тел. Поэтому можно сделать вывод, что по мо-дулю обе силы равны. Тем не менее, по направлению — они противоположные. В слу-чае если заряды тел одноименные, тела от-талкиваются (рис. 4.48). Если заряды тел раз-ноименные, то тела притягиваются (рис. 4.49). Окончательно можно записать:

F̅ 1 = - F̅ 2 .

Записанное равенство подтверждает спра-ведливость III закона динамики Ньютона для электрических взаимодействий. Поэтому в одной из распространенных формулиро-вок закона Кулона говорится, что

сила взаи-модействия двух заряженных точечных тел пропорциональна произведению значений их за-рядов и обратно пропорциональна квадрату расстояния между ними.

Если заряженные тела находятся в ди-электрике, то сила взаимодействия будет зависеть от диэлектрической проницаемости этого диэлектрика

F = k . q 1 q 2 / ε r 2 .

Для удобства расчетов, базирующихся на законе Кулона, значение коэффициента k записывают иначе:

k = 1 / 4 πε 0 .

Величина ε 0 называется электрической по-стоянной . Ее значение вычисляется в соот-ветствии с определением:

9 . 10 9 Н.м 2 /Кл 2 = 1 / 4πε 0 ,

ε 0 = (1 / 4π) . 9 . 10 9 Н.м 2 /Кл 2 = 8,85 . 10 -12 Кл 2 /Н.м 2 . Материал с сайта

Таким образом, закон Кулона в общем случае можно выразить формулой

F = (1 / 4πε 0 ) . q 1 q 2 / ε r 2 .

Закон Кулона является одним из фунда-ментальных законов природы. На нем бази-руется вся электродинамика, и не отмечено ни единого случая, когда бы нарушался закон Кулона . Существует единственное ог-раничение, которое касается действия за-кона Кулона на различных расстояниях. Счи-тается, что закон Кулона действует на рас-стояниях больше 10 -16 м и меньше несколь-ких километров.

При решении задач необходимо учиты-вать, что закон Кулона касается сил вза-имодействия точечных неподвижных заря-женных тел. Это сводит все задачи к задачам о взаимодействии неподвижных заряженных тел, в которых применяется два положения статики:

  1. равнодействующая всех сил, действую-щих на тело, равна нулю;
  2. сумма моментов сил равна нулю.

В подавляющем большинстве задач на применение закона Кулона достаточно учи-тывать лишь первое положение.

На этой странице материал по темам:

  • Элзапишите формулу закона кулона

  • Закон кулона реферат

  • Доклад по физике на тему закон кулона

  • На данном уроке, тема которого: «Закон Кулона», мы поговорим о самом законе Кулона, о том, что такое точечные заряды, а для закрепления материала решим несколько задач на данную тему.

    Тема урока: «Закон Кулона». Закон Кулона количественно описывает взаимодействие точечных неподвижных зарядов - то есть зарядов, которые находятся в статичном положении друг относительно друга. Такое взаимодействие называется электростатическим или электрическим и является частью электромагнитного взаимодействия.

    Электромагнитное взаимодействие

    Конечно, если заряды находятся в движении - они тоже взаимодействуют. Такое взаимодействие называется магнитным и описывается в разделе физики, который носит название «Магнетизм».

    Стоит понимать, что «электростатика» и «магнетизм» - это физические модели, и вместе они описывают взаимодействие как подвижных, так и неподвижных друг относительно друга зарядов. И всё вместе это называется электромагнитным взаимодействием.

    Электромагнитное взаимодействие - это одно из четырех фундаментальных взаимодействий, существующих в природе.

    Электрический заряд

    Что же такое электрический заряд? Определения в учебниках и Интернете говорят нам, что заряд - это скалярная величина, характеризующая интенсивность электромагнитного взаимодействия тел. То есть электромагнитное взаимодействие - это взаимодействие зарядов, а заряд - это величина, характеризующая электромагнитное взаимодействие. Звучит запутанно - два понятия определяются друг через друга. Разберемся!

    Существование электромагнитного взаимодействия - это природный факт, что-то вроде аксиомы в математике. Люди его заметили и научились описывать. Для этого они ввели удобные величины, которые это явление характеризуют (в том числе электрический заряд) и построили математические модели (формулы, законы и т. д.), которые это взаимодействие описывают.

    Закон Кулона

    Выглядит закон Кулона следующим образом:

    Сила взаимодействия двух неподвижных точечных электрических зарядов в вакууме прямо пропорциональна произведению их модулей и обратно пропорциональна квадрату расстояния между ними. Она направлена вдоль прямой, соединяющей заряды, и является силой притяжения, если заряды разноименные, и силой отталкивания, если заряды одноименные.

    Коэффициент k в законе Кулона численно равен:

    Аналогия с гравитационным взаимодействием

    Закон всемирного тяготения гласит: все тела, обладающие массой, притягиваются друг к другу. Такое взаимодействие называется гравитационным. Например, сила тяжести, с которой мы притягиваемся к Земле, - это частный случай именно гравитационного взаимодействия. Ведь и мы, и Земля обладаем массой. Сила гравитационного взаимодействия прямо пропорциональна произведению масс взаимодействующих тел и обратно пропорциональна квадрату расстояния между ними.

    Коэффициент γ называется гравитационной постоянной.

    Численно он равен: .

    Как видите, вид выражений, количественно описывающих гравитационное и электростатическое взаимодействия, очень похож.

    В числителях обоих выражений - произведение единиц, характеризующих данный тип взаимодействия. Для гравитационного - это массы, для электромагнитного - заряды. В знаменателях обоих выражений - квадрат расстояния между объектами взаимодействия.

    Обратная зависимость от квадрата расстояния часто встречается во многих физических законах. Это позволяет говорить об общей закономерности, связывающей величину эффекта с квадратом расстояния между объектами взаимодействия.

    Эта пропорциональность справедлива для гравитационного, электрического, магнитного взаимодействий, силы звука, света, радиации и т. д.

    Объясняется это тем, что площадь поверхности сферы распространения эффекта увеличивается пропорционально квадрату радиуса (см. рис. 1).

    Рис. 1. Увеличение площади поверхности сфер

    Это будет выглядеть естественным, если вспомнить, что площадь сферы пропорциональна квадрату радиуса:

    Физически это означает, что сила взаимодействия двух точечных неподвижных зарядов в 1 Кл, находящихся на расстоянии 1 м друг от друга в вакууме, будет равна 9·10 9 Н (см. рис. 2).

    Рис. 2. Сила взаимодействия двух точечных зарядов в 1 Кл

    Казалось бы, эта сила огромна. Но стоит понимать, что ее порядок связан с еще одной характеристикой - величиной заряда 1 Кл. На практике заряженные тела, с которыми мы взаимодействуем в повседневной жизни, имеют заряд порядка микро- или даже нанокулонов.

    Коэффициент и электрическая постоянная

    Иногда вместо коэффициента используется другая постоянная, характеризующая электростатическое взаимодействие, которая так и называется - «электрическая постоянная». Обозначается она . С коэффициентом она связана следующим образом:

    Выполнив несложные математические преобразования можно ее выразить и вычислить:

    Обе константы, конечно, присутствуют в таблицах задачников. Закон Кулона тогда примет такой вид:

    Обратим внимание на несколько тонких моментов.

    Важно понимать, что речь идет именно о взаимодействии. То есть если мы возьмем два заряда, то каждый из них будет действовать на другой с силой, по модулю равной. Эти силы будут направлены в противоположные стороны вдоль прямой, соединяющей точечные заряды.

    Заряды будут отталкиваться, если они имеют один знак (оба положительные или оба отрицательные (см. рис. 3)), и притягиваться, если имеют разные знаки (один отрицательный, другой положительный (см. рис. 4)).

    Рис. 3. Взаимодействие одноименных зарядов

    Рис. 4. Взаимодействие разноименных зарядов

    Точечный заряд

    В формулировке закона Кулона присутствует термин «точечный заряд». Что это означает? Вспомним механику. Исследуя, например, движение поезда между городами, мы пренебрегали его размерами. Ведь размеры поезда в сотни или тысячи раз меньше расстояния между городами (см. рис. 5). В такой задаче мы считали поезд «материальной точкой» - телом, размерами которого в рамках решения некоторой задачи мы можем пренебречь.

    Рис. 5. Размерами поезда в данном случае пренебрегаем

    Так вот, точечные заряды - это материальные точки, обладающие зарядом. На практике, используя закон Кулона, мы пренебрегаем размерами заряженных тел в сравнении с расстояниями между ними. Если же размеры заряженных тел сопоставимы с расстоянием между ними, то из-за перераспределения заряда внутри тел электростатическое взаимодействие будет носить более сложный характер.

    В вершинах правильного шестиугольника со стороной помещены друг за другом заряды . Найдите силу, действующую на заряд , расположенный в центре шестиугольника (см. рис. 6).

    Рис. 6. Рисунок к условию задачи 1

    Порассуждаем: заряд, находящийся в центре шестиугольника, будет взаимодействовать с каждым из зарядов, находящихся в вершинах шестиугольника. В зависимости от знаков это будет сила притяжения или сила отталкивания. С зарядами 1, 2 и 3, которые являются положительными, заряд, находящийся в центре, будет испытывать электростатическое отталкивание (см. рис. 7).

    Рис. 7. Электростатическое отталкивание

    А с зарядами 4, 5 и 6 (отрицательными) заряд в центре будет иметь электростатическое притяжение (см. рис. 8).

    Рис. 8. Электростатическое притяжение

    Суммарная сила, действующая на заряд, находящийся в центре шестиугольника, будет равнодействующей сил ,,,, и, модуль каждой из которых можно найти с помощью закона Кулона. Приступим к решению задачи.

    Решение

    Силы взаимодействия заряда, который находится в центре, с каждым из зарядов в вершинах зависит от модулей самих зарядов и расстояния между ними. Расстояние от вершин к центру правильного шестиугольника одинаковое, модули у взаимодействующих зарядов в нашем случае тоже равны (см. рис. 9).

    Рис. 9. Расстояния от вершин до центра в правильном шестиугольнике равны

    А значит, все силы взаимодействия заряда в центре шестиугольника с зарядами в вершинах будут равны по модулю. Воспользовавшись законом Кулона, мы можем найти этот модуль:

    Расстояние от центра до вершины в правильном шестиугольнике равно длине стороны правильного шестиугольника, которая нам известна из условия, поэтому:

    Теперь нам необходимо найти векторную сумму - для этого выберем систему координат: ось вдоль силы , а ось перпендикулярно (см. рис. 10).

    Рис. 10. Выбор осей

    Найдем суммарные проекции на оси - модуль каждой из них обозначим просто .

    Так как силы и сонаправлены с осью , а находятся под углом к оси (см. рис. 11).

    Проделаем такие же действия для оси :

    Знак «-» - потому что силы и направлены в противоположную сторону оси . То есть проекция суммарной силы на ось , которую мы выбрали, будет равна 0. Получается, что суммарная сила будет действовать только вдоль оси , остается подставить сюда только выражения для модуля сил взаимодействия и и получить ответ. Суммарная сила будет равна:

    Задача решена.

    Еще один тонкий момент заключается вот в чем: в законе Кулона сказано, что заряды находятся в вакууме (см. рис. 12).

    Рис. 12. Взаимодействие зарядов в вакууме

    Это действительно важное замечание. Потому что в среде, отличной от вакуума, сила электростатического взаимодействия будет ослабляться (см. рис. 13).

    Рис. 13. Взаимодействие зарядов в среде, отличной от вакуума

    Чтобы учесть этот фактор, в модель электростатики была введена специальная величина, которая позволяет сделать «поправку на среду». Называется она диэлектрической проницаемостью среды. Обозначается, как и электрическая постоянная, греческой буквой «эпсилон», но уже без индекса.

    Физический смысл этой величины заключается в следующем.

    Сила электростатического взаимодействия двух точечных неподвижных зарядов в среде, отличной от вакуума, будет в ε раз меньше, чем сила взаимодействия таких же зарядов на таком же расстоянии в вакууме.

    Таким образом, в среде, отличной от вакуума, сила электростатического взаимодействия двух точечных неподвижных зарядов будет равна:

    Значения диэлектрической проницаемости различных веществ давно найдены и собраны в специальных таблицах (см. рис. 14).

    Рис. 14. Диэлектрическая проницаемость некоторых веществ

    Мы можем свободно использовать табличные значения диэлектрической проницаемости необходимых нам веществ при решении задач.

    Важно понимать, что при решении задач сила электростатического взаимодействия рассматривается и описывается в уравнениях динамики как обычная сила. Решим задачу.

    Два одинаковых заряженных шарика подвешены в среде с диэлектрической проницаемостью на нитях одинаковой длины , закрепленных в одной точке. Определите модуль заряда шариков, если нити находятся под прямым углом друг к другу (см. рис. 15). Размеры шариков пренебрежимо малы по сравнению с расстоянием между ними. Массы шариков равны .


    Рис. 15. Рисунок к условию задачи 2

    Порассуждаем: на каждый из шариков будут действовать три силы - сила тяжести ; сила электростатического взаимодействия и сила натяжения нити (см. рис. 16).

    Рис. 16. Силы, действующие на шарики

    По условию шарики одинаковые, то есть их заряды равны как по модулю, так и по знаку, а значит, сила электростатического взаимодействия в данном случае будет силой отталкивания (на рис. 16 силы электростатического взаимодействия направлены в разные стороны). Так как система находится в равновесии, будем использовать первый закон Ньютона:

    Так как в условии сказано, что шарики подвешены в среде с диэлектрической проницаемостью , а размеры шариков пренебрежимо малы по сравнению с расстоянием между ними, то в соответствии с законом Кулона сила, с которой будут отталкиваться шарики, будет равна:

    Решение

    Распишем первый закон Ньютона в проекциях на оси координат. Ось направим горизонтально, а ось вертикально (см. рис. 17).

    Энциклопедичный YouTube

      1 / 5

      ✪ Урок 213. Электрические заряды и их взаимодействие. Закон Кулона

      ✪ 8 кл - 106. Закон Кулона

      ✪ Закон Кулона

      ✪ физика ЗАКОН КУЛОНА решение задач

      ✪ Урок 215. Задачи на закон Кулона - 1

      Субтитры

    Формулировки

    Сила взаимодействия двух точечных зарядов в вакууме направлена вдоль прямой, соединяющей эти заряды, пропорциональна их величинам и обратно пропорциональна квадрату расстояния между ними. Она является силой притяжения, если знаки зарядов разные, и силой отталкивания, если эти знаки одинаковы.

    Важно отметить, что для того, чтобы закон был верен, необходимы:

    1. Точечность зарядов, то есть расстояние между заряженными телами должно быть много больше их размеров. Впрочем, можно доказать, что сила взаимодействия двух объёмно распределённых зарядов со сферически симметричными непересекающимися пространственными распределениями равна силе взаимодействия двух эквивалентных точечных зарядов, размещённых в центрах сферической симметрии;
    2. Их неподвижность. Иначе вступают в силу дополнительные эффекты: магнитное поле движущегося заряда и соответствующая ему дополнительная сила Лоренца , действующая на другой движущийся заряд;
    3. Расположение зарядов в вакууме .

    Однако с некоторыми корректировками закон справедлив также для взаимодействий зарядов в среде и для движущихся зарядов.

    В векторном виде в формулировке Ш. Кулона закон записывается следующим образом:

    F → 12 = k ⋅ q 1 ⋅ q 2 r 12 2 ⋅ r → 12 r 12 , {\displaystyle {\vec {F}}_{12}=k\cdot {\frac {q_{1}\cdot q_{2}}{r_{12}^{2}}}\cdot {\frac {{\vec {r}}_{12}}{r_{12}}},}

    где F → 12 {\displaystyle {\vec {F}}_{12}} - сила, с которой заряд 1 действует на заряд 2; q 1 , q 2 {\displaystyle q_{1},q_{2}} - величина зарядов; r → 12 {\displaystyle {\vec {r}}_{12}} - радиус-вектор (вектор, направленный от заряда 1 к заряду 2, и равный, по модулю, расстоянию между зарядами - r 12 {\displaystyle r_{12}} ); k {\displaystyle k} - коэффициент пропорциональности.

    Коэффициент k

    k = 1 ε . {\displaystyle k={\frac {1}{\varepsilon }}.} k = 1 4 π ε ε 0 . {\displaystyle k={\frac {1}{4\pi \varepsilon \varepsilon _{0}}}.}

    Закон Кулона в квантовой механике

    Закон Кулона с точки зрения квантовой электродинамики

    История

    Впервые исследовать экспериментально закон взаимодействия электрически заряженных тел предложил Г. В. Рихман в 1752-1753 гг. Он намеревался использовать для этого сконструированный им электрометр-«указатель». Осуществлению этого плана помешала трагическая гибель Рихмана.

    Примерно за 11 лет до Кулона, в 1771 г., закон взаимодействия зарядов был экспериментально открыт Г. Кавендишем , однако результат не был опубликован и долгое время (свыше 100 лет) оставался неизвестным. Рукописи Кавендиша были вручены Д. К. Максвеллу лишь в 1874 г одним из потомков Кавендиша на торжественном открытии Кавендишской лаборатории и опубликованы в 1879 г.

    Сам Кулон занимался исследованием кручения нитей и изобрел крутильные весы . Он открыл свой закон, измеряя с помощью них силы взаимодействия заряженных шариков.

    Закон Кулона, принцип суперпозиции и уравнения Максвелла

    Степень точности закона Кулона

    Закон Кулона - экспериментально установленный факт. Его справедливость неоднократно подтверждалась всё более точными экспериментами. Одним из направлений таких экспериментов является проверка того, отличается ли показатель степени r в законе от 2. Для поиска этого отличия используется тот факт, что если степень точно равна двум, то поле внутри полости в проводнике отсутствует, какова бы ни была форма полости или проводника .

    Такие опыты впервые провел Кавендиш и повторил Максвелл в усовершенствованном виде, получив для максимального отличия показателя в степени от двух величину 1 21600 {\displaystyle {\frac {1}{21600}}}

    Эксперименты, проведённые в 1971 г. в США Э. Р. Уильямсом, Д. Е. Фоллером и Г. А. Хиллом, показали, что показатель степени в законе Кулона равен 2 с точностью до (3 , 1 ± 2 , 7) × 10 − 16 {\displaystyle (3,1\pm 2,7)\times 10^{-16}} .

    Для проверки точности закона Кулона на внутриатомных расстояниях У. Ю. Лэмбом и Р. Резерфордом в 1947 г. были использованы измерения относительного расположения уровней энергии водорода. Было установлено, что и на расстояниях порядка атомных 10 −8 см, показатель степени в законе Кулона отличается от 2 не более чем на 10 −9 .

    Коэффициент k {\displaystyle k} в законе Кулона остается постоянным с точностью до 15⋅10 −6 .

    Поправки к закону Кулона в квантовой электродинамике

    На небольших расстояниях (порядка комптоновской длины волны электрона , λ e = ℏ m e c {\displaystyle \lambda _{e}={\tfrac {\hbar }{m_{e}c}}} ≈3.86⋅10 −13 м , где m e {\displaystyle m_{e}} - масса электрона , ℏ {\displaystyle \hbar } - постоянная Планка , c {\displaystyle c} - скорость света) становятся существенными нелинейные эффекты квантовой электродинамики: на обмен виртуальными фотонами накладывается генерация виртуальных электрон -позитронных (а также мюон -антимюонных и таон -антитаонных) пар, а также уменьшается влияние экранирования (см. перенормировка). Оба эффекта ведут к появлению экспоненциально убывающих членов порядка e − 2 r / λ e {\displaystyle e^{-2r/\lambda _{e}}} в выражении для потенциальной энергии взаимодействия зарядов и, как результат, к увеличению силы взаимодействия по сравнению с вычисляемой по закону Кулона.

    Φ (r) = Q r ⋅ (1 + α 4 π e − 2 r / λ e (r / λ e) 3 / 2) , {\displaystyle \Phi (r)={\frac {Q}{r}}\cdot \left(1+{\frac {\alpha }{4{\sqrt {\pi }}}}{\frac {e^{-2r/\lambda _{e}}}{(r/\lambda _{e})^{3/2}}}\right),}

    где λ e {\displaystyle \lambda _{e}} - комптоновская длина волны электрона, α = e 2 ℏ c {\displaystyle \alpha ={\tfrac {e^{2}}{\hbar c}}} - постоянная тонкой структуры и r ≫ λ e {\displaystyle r\gg \lambda _{e}} .

    На расстояниях порядка λ W = ℏ m w c {\displaystyle \lambda _{W}={\tfrac {\hbar }{m_{w}c}}} ~ 10 −18 м, где m w {\displaystyle m_{w}} - масса W-бозона , в игру вступают уже электрослабые эффекты.

    В сильных внешних электромагнитных полях, составляющих заметную долю от поля пробоя вакуума (порядка m e c 2 e λ e {\displaystyle {\tfrac {m_{e}c^{2}}{e\lambda _{e}}}} ~10 18 В/м или m e c e λ e {\displaystyle {\tfrac {m_{e}c}{e\lambda _{e}}}} ~10 9 Тл, такие поля наблюдаются, например, вблизи некоторых типов нейтронных звёзд , а именно магнитаров) закон Кулона также нарушается в силу дельбрюковского рассеяния обменных фотонов на фотонах внешнего поля и других, более сложных нелинейных эффектов. Это явление уменьшает кулоновскую силу не только в микро- но и в макромасштабах, в частности, в сильном магнитном поле кулоновский потенциал падает не обратно пропорционально расстоянию, а экспоненциально .

    Закон Кулона и поляризация вакуума

    Закон Кулона и сверхтяжелые ядра

    Значение закона Кулона в истории науки

    Закон Кулона является первым открытым количественным и сформулированным на математическом языке фундаментальным законом для электромагнитных явлений. С открытия закона Кулона началась современная наука об электромагнетизме .

    См. также

    Ссылки

    • Закон Кулона (видеурок, программа 10 класса)

    Примечания

    1. Сивухин Д. В. Общий курс физики. - М. : Физматлит ; Изд-во МФТИ , 2004. - Т. III. Электричество. - С. 17. - 656 с. - ISBN 5-9221-0227-3 .
    2. Ландау Л. Д. , Лифшиц Е. М. Теоретическая физика: Учеб. пособ.: Для вузов. В 10 т . Т. 2 Теория поля. - 8-е изд., стереот. - М.: ФИЗМАТЛИТ, 2001. - 536 с. -

    Закон

    Зако́н Куло́на

    Модуль силы взаимодействия двух точечных зарядов в вакууме прямо пропорционален произведению модулей этих зарядов и обратно пропорционален квадрату расстояния между ними.

    Иначе: Два точечных заряда в вакууме действуют друг на друга с силами, которые пропорциональны произведению модулей этих зарядов, обратно пропорциональны квадрату расстояния между ними и направлены вдоль прямой, соединяющей эти заряды. Эти силы называются электростатическими (кулоновскими).

      их неподвижность. Иначе вступают в силу дополнительные эффекты: магнитное поле движущегося заряда и соответствующая ему дополнительная сила Лоренца , действующая на другой движущийся заряд;

      взаимодействие в вакууме .

    где - сила, с которой заряд 1 действует на заряд 2; - величина зарядов; - радиус-вектор (вектор, направленный от заряда 1 к заряду 2, и равный, по модулю, расстоянию между зарядами - ); - коэффициент пропорциональности. Таким образом, закон указывает, что одноимённые заряды отталкиваются (а разноимённые - притягиваются).

    В СГСЭ единица измерения заряда выбрана таким образом, что коэффициент k равен единице.

    В Международной системе единиц (СИ) одной из основных единиц является единица силы электрического тока ампер , а единица заряда - кулон - производная от него. Величина ампера определена таким образом, что k = c2·10−7 Гн /м = 8,9875517873681764·109 Н ·м2/Кл 2 (или Ф−1·м). В СИ коэффициент k записывается в виде:

    где ≈ 8,854187817·10−12 Ф/м - электрическая постоянная .

    Закон Кулона это:

    Закон Кулона О законе сухого трения см. Закон Амонтона - Кулона Магнитостатика Электродинамика Электрическая цепь Ковариантная формулировка Известные учёные

    Зако́н Куло́на - это закон, описывающий силы взаимодействия между точечными электрическими зарядами.

    Был открыт Шарлем Кулоном в 1785 г. Проведя большое количество опытов с металлическими шариками, Шарль Кулон дал такую формулировку закона:

    Модуль силы взаимодействия двух точечных зарядов в вакууме прямо пропорционален произведению модулей этих зарядов и обратно пропорционален квадрату расстояния между ними

    Иначе: Два точечных заряда в вакууме действуют друг на друга с силами, которые пропорциональны произведению модулей этих зарядов, обратно пропорциональны квадрату расстояния между ними и направлены вдоль прямой, соединяющей эти заряды. Эти силы называются электростатическими (кулоновскими).

    Важно отметить, что для того, чтобы закон был верен, необходимы:

    1. точечность зарядов - то есть расстояние между заряженными телами много больше их размеров - впрочем, можно доказать, что сила взаимодействия двух объёмно распределённых зарядов со сферически симметричными непересекающимися пространственными распределениями равна силе взаимодействия двух эквивалентных точечных зарядов, размещённых в центрах сферической симметрии;
    2. их неподвижность. Иначе вступают в силу дополнительные эффекты: магнитное поле движущегося заряда и соответствующая ему дополнительная сила Лоренца, действующая на другой движущийся заряд;
    3. взаимодействие в вакууме.

    Однако с некоторыми корректировками закон справедлив также для взаимодействий зарядов в среде и для движущихся зарядов.

    В векторном виде в формулировке Ш. Кулона закон записывается следующим образом:

    где - сила, с которой заряд 1 действует на заряд 2; - величина зарядов; - радиус-вектор (вектор, направленный от заряда 1 к заряду 2, и равный, по модулю, расстоянию между зарядами -); - коэффициент пропорциональности. Таким образом, закон указывает, что одноимённые заряды отталкиваются (а разноимённые - притягиваются).

    Коэффициент k

    В СГСЭ единица измерения заряда выбрана таким образом, что коэффициент k равен единице.

    В Международной системе единиц (СИ) одной из основных единиц является единица силы электрического тока ампер, а единица заряда - кулон - производная от него. Величина ампера определена таким образом, что k = c2·10-7 Гн/м = 8,9875517873681764·109 Н·м2/Кл2 (или Ф−1·м). В СИ коэффициент k записывается в виде:

    где ≈ 8,854187817·10−12 Ф/м - электрическая постоянная.

    В однородном изотропном веществе в знаменатель формулы добавляется относительная диэлектрическая проницаемость среды ε.

    Закон Кулона в квантовой механике

    В квантовой механике закон Кулона формулируется не при помощи понятия силы, как в классической механике, а при помощи понятия потенциальной энергии кулоновского взаимодействия. В случае, когда рассматриваемая в квантовой механике система содержит электрически заряженные частицы, к оператору Гамильтона системы добавляются слагаемые, выражающие потенциальную энергию кулоновского взаимодействия, так, как она вычисляется в классической механике.

    Так, оператор Гамильтона атома с зарядом ядра Z имеет вид:

    Здесь m - масса электрона, е - его заряд, - абсолютная величина радиус-вектора j -го электрона, . Первое слагаемое выражает кинетическую энергию электронов, второе слагаемое - потенциальную энергию кулоновского взаимодействия электронов с ядром и третье слагаемое - потенциальную кулоновскую энергию взаимного отталкивания электронов. Суммирование в первом и втором слагаемом ведется по всем N электронам. В третьем слагаемом суммирование идёт по всем парам электронов, причём каждая пара встречается однократно.

    Закон Кулона с точки зрения квантовой электродинамики

    Согласно квантовой электродинамике, электромагнитное взаимодействие заряженных частиц осуществляется путём обмена виртуальными фотонами между частицами. Принцип неопределённости для времени и энергии допускает существование виртуальных фотонов на время между моментами их испускания и поглощения. Чем меньше расстояние между заряженными частицами, тем меньшее время нужно виртуальным фотонам для преодоления этого расстояния и следовательно, тем большая энергия виртуальных фотонов допускается принципом неопределенности. При малых расстояниях между зарядами принцип неопределённости допускает обмен как длинноволновыми, так и коротковолновыми фотонами, а при больших расстояниях в обмене участвуют только длинноволновые фотоны. Таким образом, с помощью квантовой электродинамики можно вывести закон Кулона.

    История

    Впервые исследовать экспериментально закон взаимодействия электрически заряженных тел предложил Г. В. Рихман в 1752-1753 гг. Он намеревался использовать для этого сконструированный им электрометр-«указатель». Осуществлению этого плана помешала трагическая гибель Рихмана.

    В 1759 г. профессор физики Санкт-Петербургской академии наук Ф. Эпинус, занявший кафедру Рихмана после его гибели, впервые предположил, что заряды должны взаимодействовать обратно пропорционально квадрату расстояния. В 1760 г. появилось краткое сообщение о том, что Д. Бернулли в Базеле установил квадратичный закон с помощью сконструированного им электрометра. В 1767 г. Пристли в своей «Истории электричества» отметил, что опыт Франклина, обнаружившего отсутствие электрического поля внутри заряженного металлического шара, может означать, что «электрическое притяжение следует точно такому же закону, как и тяготение, то есть квадрату расстояния» . Шотландский физик Джон Робисон утверждал (1822), что в 1769 г. обнаружил, что шары с одинаковым электрическим зарядом отталкиваются с силой, обратно пропорциональной квадрату расстояния между ними, и таким образом предвосхитил открытие закона Кулона (1785).

    Примерно за 11 лет до Кулона, в 1771 г., закон взаимодействия зарядов был экспериментально открыт Г. Кавендишем, однако результат не был опубликован и долгое время (свыше 100 лет) оставался неизвестным. Рукописи Кавендиша были вручены Д. К. Максвеллу лишь в 1874 г одним из потомков Кавендиша на торжественном открытии Кавендишской лаборатории и опубликованы в 1879 г.

    Сам Кулон занимался исследованием кручения нитей и изобрел крутильные весы. Он открыл свой закон, измеряя с помощью них силы взаимодействия заряженных шариков.

    Закон Кулона, принцип суперпозиции и уравнения Максвелла

    Закон Кулона и принцип суперпозиции для электрических полей полностью равносильны уравнениям Максвелла для электростатики и. То есть закон Кулона и принцип суперпозиции для электрических полей выполняются тогда и только тогда, когда выполняются уравнения Максвелла для электростатики и, наоборот, уравнения Максвелла для электростатики выполняются тогда и только тогда, когда выполняются закон Кулона и принцип суперпозиции для электрических полей.

    Cтепень точности закона Кулона

    Закон Кулона - экспериментально установленный факт. Его справедливость неоднократно подтверждалась всё более точными экспериментами. Одним из направлений таких экспериментов является проверка того, отличается ли показатель степени r в законе от 2. Для поиска этого отличия используется тот факт, что если степень точно равна двум, то поле внутри полости в проводнике отсутствует, какова бы ни была форма полости или проводника.

    Эксперименты, проведённые в 1971 г. в США Э. Р. Уильямсом, Д. Е. Фоллером и Г. А. Хиллом, показали, что показатель степени в законе Кулона равен 2 с точностью до .

    Для проверки точности закона Кулона на внутриатомных расстояниях У. Ю. Лэмбом и Р. Резерфордом в 1947 г. были использованы измерения относительного расположения уровней энергии водорода. Было установлено, что и на расстояниях порядка атомных 10−8 см, показатель степени в законе Кулона отличается от 2 не более чем на 10−9.

    Коэффициент в законе Кулона остается постоянным с точностью до 15·10−6.

    Поправки к закону Кулона в квантовой электродинамике

    На небольших расстояниях (порядка комптоновской длины волны электрона, ≈3.86·10−13 м , где - масса электрона, - постоянная Планка, - скорость света) становятся существенными нелинейные эффекты квантовой электродинамики: на обмен виртуальными фотонами накладывается генерация виртуальных электрон-позитронных (а также мюон-антимюонных и таон-антитаонных) пар, а также уменьшается влияние экранирования (см. перенормировка). Оба эффекта ведут к появлению экспоненциально убывающих членов порядка в выражении для потенциальной энергии взаимодействия зарядов и, как результат, к увеличению силы взаимодействия по сравнению с вычисляемой по закону Кулона. Например, выражение для потенциала точечного заряда в системе СГС, с учётом радиационных поправок первого порядка принимает вид :

    где - комптоновская длина волны электрона, - постоянная тонкой структуры и. На расстояниях порядка ~ 10−18 м, где - масса W-бозона, в игру вступают уже электрослабые эффекты.

    В сильных внешних электромагнитных полях, составляющих заметную долю от поля пробоя вакуума (порядка ~1018 В/м или ~109 Тл, такие поля наблюдаются, например, вблизи некоторых типов нейтронных звёзд, а именно магнитаров) закон Кулона также нарушается в силу дельбрюковского рассеяния обменных фотонов на фотонах внешнего поля и других, более сложных нелинейных эффектов. Это явление уменьшает кулоновскую силу не только в микро- но и в макромасштабах, в частности, в сильном магнитном поле кулоновский потенциал падает не обратно пропорционально расстоянию, а экспоненциально.

    Закон Кулона и поляризация вакуума

    Явление поляризации вакуума в квантовой электродинамике заключается в образовании виртуальных электронно-позитронных пар. Облако электронно-позитронных пар экранирует электрический заряд электрона. Экранировка растет с ростом расстояния от электрона, в результате эффективный электрический заряд электрона является убывающей функцией расстояния . Эффективный потенциал, создаваемый электроном с электрическим зарядом, можно описать зависимостью вида. Эффективный заряд зависит от расстояния по логарифмическому закону:

    Т. н. постоянная тонкой структуры ≈7.3·10−3;

    Т. н. классический радиус электрона ≈2.8·10−13 см..

    Эффект Юлинга

    Явление отклонения электростатического потенциала точечных зарядов в вакууме от значения закона Кулона известно как эффект Юлинга, который впервые вычислил отклонения от закона Кулона для атома водорода. Эффект Юлинга даёт поправку к лэмбовскому сдвигу 27 мггц.

    Закон Кулона и сверхтяжелые ядра

    В сильном электромагнитном поле вблизи сверхтяжелых ядер с зарядом осуществляется перестройка вакуума, аналогичная обычному фазовому переходу. Это приводит к поправкам к закону Кулона

    Значение закона Кулона в истории науки

    Закон Кулона является первым открытым количественным и сформулированным на математическом языке законом для электромагнитных явлений. С открытия закона Кулона началась современная наука об электромагнетизме.

    См. также

    • Электрическое поле
    • Дальнодействие
    • Закон Био - Савара - Лапласа
    • Закон притяжения
    • Кулон, Шарль Огюстен де
    • Кулон (единица измерения)
    • Принцип суперпозиции
    • Уравнения Максвелла

    Ссылки

    • Закон Кулона (видеурок, программа 10 класса)

    Примечания

    1. Ландау Л. Д., Лифшиц Е. М. Теоретическая физика: Учеб. пособ.: Для вузов. В 10 т. Т. 2 Теория поля. - 8-е изд., стереот. - М.: ФИЗМАТЛИТ, 2001. - 536 с. - ISBN 5-9221-0056-4 (Т. 2), Гл. 5 Постоянное электромагнитное поле, п. 38 Поле равномерно движущегося заряда, с 132
    2. Ландау Л. Д., Лифшиц Е. М. Теоретическая физика: Учеб. пособ.: Для вузов. В 10 т. Т. 3. Квантовая механика (нерелятивистская теория). - 5-е изд., стереот. - М.: Физматлит, 2002. - 808 с. - ISBN 5-9221-0057-2 (Т. 3), гл. 3 Уравнение Шредингера, п. 17 Уравнение Шредингера, с. 74
    3. Г. Бете Квантовая механика. - пер. с англ., под ред. В. Л. Бонч-Бруевича, «Мир», М., 1965, Часть 1 Теория строения атома, Гл. 1 Уравнение Шредингера и приближённые методы его решения, с. 11
    4. Р. Е. Пайерлс Законы природы. пер. с англ. под ред. проф. И. М. Халатникова, Государственное издательство физико-математической литературы, М., 1959, тир. 20000 экз., 339 с., Гл. 9 «Электроны при высоких скоростях», п. «Силы при больших скоростях. Другие трудности», c. 263
    5. Л. Б. Окунь … z Элементарное введение в физику элементарных частиц, М., Наука, 1985, Библиотечка «Квант», вып. 45, п. «Виртуальные частицы», с. 57.
    6. Novi Comm. Acad. Sc. Imp. Petropolitanae, v. IV, 1758, p. 301.
    7. Эпинус Ф. Т. У. Теория электричества и магнетизма. - Л.: АН СССР, 1951. - 564 с. - (Классики науки). - 3000 экз.
    8. Abel Socin (1760) Acta Helvetiсa , vol. 4, pages 224-225.
    9. J. Priestley. The History and present state of Electricity with original experiments. London, 1767, p. 732.
    10. John Robison, A System of Mechanical Philosophy (London, England: John Murray, 1822), vol. 4. На стр. 68 Робисон заявляет, что в 1769 он обнародовал свои измерения силы, действующей между сферами с одинаковым зарядом, и описывает также историю исследований в этой области, отмечая имена Эпинуса, Кавендиша и Кулона. На стр. 73 автор пишет, что сила изменяется как x −2,06.
    11. С. Р. Филонович «Кавендиш, Кулон и электростатика», М., «Знание», 1988, ББК 22.33 Ф53, гл. «Судьба закона», с. 48
    12. Р. Фейнман, Р. Лейтон, М. Сэндс, Фейнмановские лекции по физике, вып. 5, «Электричество и магнетизм», пер. с англ., под ред. Я. А. Смородинского, изд. 3, М., Едиториал УРСС, 2004, ISBN 5-354-00703-8 (Электричество и магнетизм), ISBN 5-354-00698-8 (Полное произведение), гл. 4 «Электростатика», п. 1 «Статика», с. 70-71;
    13. Р. Фейнман, Р. Лейтон, М. Сэндс, Фейнмановские лекции по физике, вып. 5, «Электричество и магнетизм», пер. с англ., под ред. Я. А. Смородинского, изд. 3, М., Едиториал УРСС, 2004, ISBN 5-354-00703-8 (Электричество и магнетизм), ISBN 5-354-00698-8 (Полное произведение), гл. 5 «Применения закона Гаусса», п. 10 «Поле внутри полости проводника», с. 106-108;
    14. E. R. Williams, J. E. Faller, H. A. Hill «New Experimental Test of Coulomb’s Law: A Laboratory Upper Limit on the Photon Rest Mass», Phys. Rev. Lett. 26, 721-724 (1971);
    15. W. E. Lamb, R. C. Retherford Fine Structure of the Hydrogen Atom by a Microwave Method (Английский) // Physical Review . - Т. 72. - № 3. - С. 241-243.
    16. 1 2 Р. Фейнман, Р. Лейтон, М. Сэндс, Фейнмановские лекции по физике, вып. 5, «Электричество и магнетизм», пер. с англ., под ред. Я. А. Смородинского, изд. 3, М., Едиториал УРСС, 2004, ISBN 5-354-00703-8 (Электричество и магнетизм), ISBN 5-354-00698-8 (Полное произведение), гл. 5 «Применения закона Гаусса», п. 8 «Точен ли закон Кулона?», с. 103;
    17. CODATA (the Committee on Data for Science and Technology)
    18. Берестецкий, В. Б., Лифшиц, Е. М., Питаевский, Л. П. Квантовая электродинамика. - Издание 3-е, исправленное. - М.: Наука, 1989. - С. 565-567. - 720 с. - («Теоретическая физика», том IV). - ISBN 5-02-014422-3
    19. Neda Sadooghi Modified Coulomb potential of QED in a strong magnetic field (Английский).
    20. Окунь Л. Б. «Физика элементарных частиц», изд. 3-е, М., «Едиториал УРСС», 2005, ISBN 5-354-01085-3, ББК 22.382 22.315 22.3о, гл. 2 «Гравитация. Электродинамика», «Поляризация вакуума», с. 26-27;
    21. «Физика микромира», гл. ред. Д. В. Ширков, М., «Советская энциклопедия», 1980, 528 с., илл., 530.1(03), Ф50, ст. «Эффективный заряд», авт. ст. Д. В. Ширков, стр. 496;
    22. Яворский Б. М. «Справочник по физике для инженеров и студентов вузов» / Б. М. Яворский, А. А. Детлаф, А. К. Лебедев, 8-e изд., перераб. и испр., М.: ООО «Издательство Оникс», ООО «Издательство Мир и образование», 2006, 1056 стр.: илл., ISBN 5-488-00330-4 (ООО «Издательство Оникс»), ISBN 5-94666-260-0 (ООО «Издательство Мир и образование»), ISBN 985-13-5975-0 (ООО «Харвест»), УДК 530(035) ББК 22.3, Я22, «Приложения», «Фундаментальные физические постоянные», с. 1008;
    23. Uehling E.A ., Phys. Rev., 48, 55, (1935)
    24. «Мезоны и поля» С. Швебер, Г. Бете, Ф. Гофман том 1 Поля гл. 5 Свойства уравнения Дирака п. 2. Состояния с отрицательной энергией c. 56, гл. 21 Перенормировка, п. 5 Поляризация вакуума с 336
    25. А. Б. Мигдал «Поляризация вакуума в сильных полях и пионная конденсация», «Успехи физических наук», т. 123, в. 3, 1977 г., ноябрь, с. 369-403;
    26. Спиридонов О. П. «Универсальные физические постоянные», М., «Просвещение», 1984, с. 52-53;

    Литература

    1. Филонович С. Р. Судьба классического закона. - М., Наука, 1990. - 240 с., ISBN 5-02-014087-2 (Библиотечка «Квант», вып. 79), тир. 70500 экз.
    Категории:
    • Физические законы
    • Электростатика

    Закон Кулона

    Крутильні терези Кулона

    Закон Кулона - один з основних законів електростатики, який визначає величину та напрямок сили взаємодії між двома нерухомими точковими зарядами. Експериментально з задовільною точністю закон вперше встановив Генрі Кавендіш у 1773. Він використовував метод сферичного конденсатора, але не опублікував своїх результатів. У 1785 році закон був встановлений Шарлем Кулоном за допомогою спеціальних крутильних терезів.

    Визначення

    Електростатична сила взаємодії F 12 двох точкових нерухомих зарядів q 1 та q 2 у вакуумі прямо пропорційна добутку абсолютних значень зарядів і обернено пропорційна квадрату відстані r 12 між ними. F 12 = k ⋅ q 1 ⋅ q 2 r 12 2 {\displaystyle F_{12}=k\cdot {\frac {q_{1}\cdot q_{2}}{r_{12}^{2}}}} ,

    у векторній формі:

    F 12 = k ⋅ q 1 ⋅ q 2 r 12 3 r 12 {\displaystyle \mathbf {F_{12}} =k\cdot {\frac {q_{1}\cdot q_{2}}{r_{12}^{3}}}\mathbf {r_{12}} } ,

    Сила взаємодії направлена вздовж прямої, що з"єднує заряди, причому однойменні заряди відштовхуються, а різнойменні притягуються. Сили, що визначаються законом Кулона адитивні.

    Для виконання сформульованого закону необхідно, щоб виконувалися такі умови:

    1. Точковість зарядів - відстань між зарядженими тілами має бути набагато більшою від розмірів тіл.
    2. Нерухомість зарядів. У протилежному випадку потрібно враховувати магнітне поле заряду, що рухається.
    3. Закон сформульовано для зарядів у вакуумі.

    Електростатична стала

    Коефіцієнт пропорційності k має назву електростатичної сталої. Він залежить від вибору одиниць вимірювання. Так, у Міжнародній системі одиниць (СІ)

    K = 1 4 π ε 0 ≈ {\displaystyle k={\frac {1}{4\pi \varepsilon _{0}}}\approx } 8,987742438·109 Н·м2·Кл-2,

    де ε 0 {\displaystyle \varepsilon _{0}} - електрична стала. Закон Кулона має вигляд:

    F 12 = 1 4 π ε 0 q 1 q 2 r 12 3 r 12 {\displaystyle \mathbf {F} _{12}={\frac {1}{4\pi \varepsilon _{0}}}{\frac {q_{1}q_{2}}{r_{12}^{3}}}\mathbf {r} _{12}} .

    Упродовж тривалого часу основною системою одиниць вимірювання була система СГС. Чимало класичної фізичної літератури написано з використанням одного з різновидів системи СГС - гаусової системи одиниць. У ній одиниця заряду обрана таким чином, що k =1, і закон Кулона набирає вигляду:

    F 12 = q 1 q 2 r 12 3 r 12 {\displaystyle \mathbf {F} _{12}={\frac {q_{1}q_{2}}{{r}_{12}^{3}}}\mathbf {r} _{12}} .

    Аналогічний вигляд закон Кулона має і в атомній системі одиниць, що використовується для в атомній фізиці та для квантовохімічних розрахунків.

    Закон Кулона в середовищі

    У середовищі сила взаємодії між зарядами зменшується завдяки явищу поляризації. Для однорідного ізотропного середовища це зменшення пропорційне певній характерній для цього середовища величині, яку називають діелектричною сталою або діелектричною проникністю і зазвичай позначають ε {\displaystyle \varepsilon } . Кулонівська сила в системі СІ має вигляд

    F 12 = 1 4 π ε ε 0 q 1 q 2 r 12 3 r 12 {\displaystyle \mathbf {F} _{12}={\frac {1}{4\pi \varepsilon \varepsilon _{0}}}{\frac {q_{1}q_{2}}{r_{12}^{3}}}\mathbf {r} _{12}} .

    Діелектрична стала повітря дуже близька до одиниці, тому в повітрі можна використовувати з достатньою точністю формулу для вакууму.

    Історія відкриття

    Здогадки про те, що взаємодія між електризованими тілами підкоряється тому ж закону оберененої пропорційності квадрату відстані, що й тяжіння, неодноразово висловлювалися дослідниками в середині 18 ст. На початку 1770-их її експериментально відкрив Генрі Кавендіш, однак своїх результатів не опублікував, і про них стало відомо тільки в кінці 19 ст. після вивчення й публікації його архівів. Шарль Кулон опублікував закон 1785 року в двох мемуарах, представлених на розгляд Французької академії наук. 1835 року Карл Гаус опублікував виведену на основі закону Кулона, теорему Гауса. У вигляді теореми Гауса закон Кулона входить до основних рівнянь електродинаміки.

    Перевірка закону

    Для макроскопічних відстаней при експериментах в земних умовах, що були проведені за методом Кавендіша, доведено що показник степеня r в законі Кулона не може відрізнятися від 2 більш ніж на 6·10−16. Із експериментів з розсіяння альфа-частинок виходить, що закон Кулона не порушується до відстаней 10−14 м. Але з іншого боку, для опису взаємодії заряджених частинок на таких відстанях поняття, за допомогою яких формулюється закон (поняття сили, положення), втрачають сенс. У цій області просторових масштабів діють закони квантової механіки.

    Закон Кулона можна вважати одним з наслідків квантової електродинаміки, в рамках якої взаємодія заряджених часток зумовлена обміном віртуальними фотонами. Внаслідок цього, експерименти з перевірки висновків квантової електродинаміки можна вважати дослідами з перевірки закону Кулона. Так, експерименти з анігіляції електронів та позитронів свідчать, що відхилення від законів квантової електродинаміки не спостерігаються до відстаней 10−18 м.

    Див. також

    • Теорема Гауса
    • Сила Лоренца

    Джерела

    • Гончаренко С. У. Фізика: Основні закони і формули.. - К. : Либідь, 1996. - 47 с.
    • Кучерук І. М., Горбачук І. Т., Луцик П. П. Електрика і магнетизм // Загальний курс фізики. - К. : Техніка, 2006. - Т. 2. - 456 с.
    • Фріш С. Е., Тіморєва А. В. Електричні і електромагнітні явища // Курс загальної фізики. - К. : Радянська школа, 1953. - Т. 2. - 496 с.
    • Физическая энциклопедия / Под ред. А. М. Прохорова. - М. : Советская энциклопедия, 1990. - Т. 2. - 703 с.
    • Сивухин Д. В. Электричество // Общий курс физики. - М. : Физматлит, 2009. - Т. 3. - 656 с.

    Примітки

    1. а б Закон Кулона можна наближено застосовувати й для рухомих зарядів, якщо їхні швидкості набагато менші від швидкості світла
    2. а б У -- Coulomb (1785a) "Premier mémoire sur l’électricité et le magnétisme," , pages 569-577 -- Кулон вивчав сили відштовхування однойменних зарядів:

      Page 574 : Il résulte donc de ces trois essais, que l"action répulsive que les deux balles électrifées de la même nature d"électricité exercent l"une sur l"autre, suit la raison inverse du carré des distances.

      Переклад : Тож, з цих трьох дослідів слідує, що сила відштовхування між двома електризованими кулями, зарядженми електрикою одної природи, слідує закону оберненої пропорційності до квадрату відстані..

      У -- Coulomb (1785b) "Second mémoire sur l’électricité et le magnétisme," Histoire de l’Académie Royale des Sciences , pages 578-611. -- Кулон показав, що тіла із протилежними зарядами притягаються із силою оберенено-пропорційною відстані.

    3. Вибір такої відносно складної формули зумовлений тим, що в Міжнародній системі базовою одиницею обрано не електричний заряд, а одиницю сили електричного струму ампер, а основні рівняння електродинаміки записані без множника 4 π {\displaystyle 4\pi } .

    Закон Кулона

    Ирина рудерфер

    Закон Кулона - это закон о взаимодействии точечных электрических зарядов.

    Был открыт Кулоном в 1785 г. Проведя большое количество опытов с металлическими шариками, Шарль Кулон дал такую формулировку закона:

    Сила взаимодействия двух точечных неподвижных заряженных тел в вакууме направлена вдоль прямой, соединяющей заряды, прямо пропорциональна произведению модулей зарядов и обратно пропорциональна квадрату расстояния между ними.
    Важно отметить, что для того, чтобы закон был верен, необходимы:
    1.точечность зарядов - то есть расстояние между заряженными телами много больше их размеров.
    2.их неподвижность. Иначе уже надо учитывать дополнительные эффекты: возникающее магнитное поле движущегося заряда и соответствующую ему дополнительную силу Лоренца, действующую на другой движущийся заряд.
    3.взаимодействие в вакууме.
    Однако, с некоторыми корректировками закон справедлив также для взаимодействий зарядов в среде и для движущихся зарядов.

    В векторном виде в формулировке Ш. Кулона закон записывается следующим образом:

    Где F1,2- сила, с которой заряд 1 действует на заряд 2; q1,q2 - величина зарядов; - радиус-вектор (вектор, направленный от заряда 1 к заряду 2, и равный, по модулю, расстоянию между зарядами - r12); k - коэффициент пропорциональности. Таким образом, закон указывает, что одноименные заряды отталкиваются (а разноименные – притягиваются) .

    Против шерсти не гладить!

    Зная о существовании электричества на протяжении тысяч лет, человек приступил к его научному изучению лишь в XVIII веке. (Интересно, что сами ученые той эпохи, занявшиеся этой проблемой, выделяли электричество в отдельную от физики науку, а себя именовали «электриками».) Одним из ведущих первоисследователей электричества явился Шарль Огюстен де Кулон. Тщательно исследовав силы взаимодействия между телами, несущими на себе различные электростатические заряды, он и сформулировал закон, носящий теперь его имя. В основном свои эксперименты он проводил следующим образом: различные электростатические заряды передавались двум маленьким шарикам, подвешенным на тончайших нитях, после чего подвесы с шариками сближались. При достаточном сближении шарики начинали притягиваться друг к другу (при противоположной полярности электрических зарядов) или отталкиваться (в случае однополярных зарядов) . В результате нити отклонялись от вертикали на достаточно большой угол, при котором силы электростатического притяжения или отталкивания уравновешивались силами земного притяжения. Замерив угол отклонения и зная массу шариков и длину подвесов, Кулон рассчитал силы электростатического взаимодействия на различном удалении шариков друг от друга и на основе этих данных вывел эмпирическую формулу:

    Где Q и q -величины электростатических зарядов, D - расстояние между ними, а k - экспериментально определяемая постоянная Кулона.

    Сразу отметим два интересных момента в законе Кулона. Во-первых, по своей математической форме он повторяет закон всемирного тяготения Ньютона, если заменить в последнем массы на заряды, а постоянную Ньютона, на постоянную Кулона. И для этого сходства есть все причины. Согласно современной квантовой теории поля и электрические, и гравитационные поля возникают, когда физические тела обмениваются между собой лишенными массы покоя элементарными частицами-энергоносителями - фотонами или гравитонами соответственно. Таким образом, несмотря на кажущееся различие в природе гравитации и электричества, у двух этих сил много общего.

    Второе важное замечание касается постоянной Кулона. Когда шотландский физик-теоретик Джеймс Кларк Максвелл вывел систему уравнений Максвелла для общего описания электромагнитных полей, выяснилось, что постоянная Кулона напрямую связана со скоростью света с. Наконец, Альберт Эйнштейн показал, что с играет роль фундаментальной мировой константы в рамках теории относительности. Таким образом можно проследить, как самые абстрактные и универсальные теории современной науки поэтапно развивались, впитывая в себя ранее полученные результаты, начиная с простых выводов, сделанных на основе настольных физических опытов.
    http://elementy.ru/trefil/coulomb_law
    http://www.fieldphysics.ru/coulombs_law/
    http://www.vnz.ru/spravki/zakon-Kulona.html