Ремонт Стены Уход

Проходческие щиты и комбайны. Проходческие щиты: описание, назначение. Горизонтальное бурение

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

хорошую работу на сайт">

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Министерство образования и науки Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего

профессионального образования

АМУРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

(ФГБОУ ВПО «АмГУ»)

Факультет Инженерно-физический

Кафедра Геологии и природопользования

Специальность 130400.65-«Горное дело»

КУРСОВАЯ РАБОТА

НА ТЕМУ: «ГОРНОПРОХОДЧЕСКИЕ ЩИТЫ И КОМПЛЕКСЫ»

Благовещенск 2014

РЕФЕРАТ

ГОРНОПРОХОДЧЕСКИЙ ЩИТ, КОМПЛЕКС, ЗАБОЙ, ПРОХОДКА, КОНСТРУКЦИЯ, ТУННЕЛЬ, КРЕПЬ

Целью курсовой работы является рассмотрение видов, составных частей, принципа работы и области применения горнопроходческих щитов и комплексов. А так же выявить достоинства и недостатки применения щитового способа проходки.

ВВЕДЕНИЕ

Горнопроходческий щит (рисунок 1) - это подвижная конструкция, находящаяся в голове строящегося туннеля и обеспечивающая безопасную разработку породы в забое, погрузку ее на внутритуннельный транспорт и возведение крепи (обделки). Проходческие щиты бывают немеханизированные (разработка породы ведется вручную) и механизированные. Проходческие щиты все в большей степени превращаются в проходческие комплексы. Они обычно имеют круглое поперечное сечение, но бывают прямоугольными, эллиптическими, подковообразными, в т. ч. незамкнутыми. По размеру щиты условно разделяют на щиты большого (более 7 м), среднего (от 7 до 5 ж) и малого сечения (менее 5м). Выполняются проходческие щиты, как правило, металлическими и могут использоваться в любых горногеологических условиях, однако наиболее эффективны они в мягких грунтах. Проходческие щиты для лучшей управляемости должны обладать необходимой маневренностью, характеризуемой, в частности, отношением длины к поперечному размеру.

Рисунок 1 - Горнопроходческий комплекс Herrenknecht-10690

Впервые проходческий щит был применен в Великобритании М.И. Брюнелем при сооружении тоннеля под рекой Темзой (1825). С их помощью сооружено большинство тоннелей метрополитенов в Москве, Петербурге, Киеве и других городах.

Диаметр получаемых тоннелей может варьироваться от 1 до 19 м. Самый большой диаметр, 19 м, у четырёх проходческих щитов, используемых в настоящее время на строительстве железнодорожного Готардского тоннеля в Швейцарии.

Для создания тоннелей малого диаметра применяется горизонтальное бурение - длина до 2 км, диаметр до 1,2 м

1 . ПРИМЕНЕНИЕ ПРОХОДЧЕСКИХ ЩИТОВ

Рабочие органы существующих проходческих щитов воздействуют на забой в основном способами вдавливания, резания или комбинированным способом. Способ вдавливания эффективен в сыпучих (песчаных) и мягокопластичных связных (глинистых и илистых) грунтах.

Вдавливание выполняется головной частью, состоящей из ножевого кольца и режущих полос или диафрагмы с окнами, через которые грунт в виде осыпей или брикетов поступает внутрь проходческого щита. При проходке в сыпучих грунтах режущие полосы делаются в виде горизонтальных и наклонных полок, объединенных между собой вертикальными ребрами. Применение проходческих щитов среднего сечения с горизонтальными полками снижает стоимость 1 пог. м туннеля и позволяет проходить в месяц до 400 пог.м. Способ резания в забое эффективен в устойчивых связных грунтах, особенно в плотных глинах и сланцах. Для резания применяются в основном роторные, планетарные и фрезерные рабочие органы. Наиболее часто используются роторные органы, режущие породу по круговым траекториям с помощью резцов, закрепленных на радиальных лучах. Пространство между лучами используется для направления срезаемой породы внутрь проходческого щита среднего сечения с горизонтальными полками и доступа политена в Москве и Киеве. Основной вал рабочего органа самостоятельно перемещается на забой со скоростью 5-7 мм/мин.

Для улучшения доступа к забою и получения высокого крутящего момента в некоторых проходческих роторный орган выполняется в виде цилиндрического корпуса с шестерней большого диаметра и радиальными лучами. В Англии успешно применяются при проходке в кембрийских глинах Лондонского метрополитена щиты диаметром 4,27 и 3,9 м с роторным рабочим органом в виде цилиндрического корпуса (барабана), оснащенного шестью внешними радиальными и внутренними диаметральными лучами, снабженными резцами.

Роторный орган был успешно применен в машинах США при проходке туннеля диаметром 7,5-7,9 м в мягких трещиноватых глинистых сланцах. При проходке Ленинградского метрополитена в кембрийских глинах успешно использован проходческий щит с планетарным рабочим органом из 6 дисков, размещенных на крестообразном водиле, к кольцу которого прикреплены 12 ковшей, захватывающих грунт. Другой щит с планетарным органом мощностью 110 кет в виде 2 дисков, закрепленных на водиле, применен при проходке туннеля Московского метрополитена в перемежающихся карбонных глинах и известняках с пределом прочности при сжатии до 300 кг /см2. С таким же щитом строится Тбилисский метрополитен в песчаниках и аргиллитах с пределом прочности при сжатии 450-630 кг/см2.

Для выборочной разработки забоя Проходческие щиты снабжаются фрезерным рабочим органом, основным элементом которого является головка, смонтированная на штанге и снабженная резцами. В Проходческом щите ПЩМ-4 диаметром 4,09 м головка включает 2 резцовые коронки диаметром 350 и 600 мм, вращающиеся в разные стороны. Штанга с рабочей головкой, закрепленная шарнирно в диафрагме, установленной перед опорным кольцом проходческого щита, с помощью гидравлических домкратов перемещается и по вертикали, и по горизонтали, а головка, кроме того, выдвигается относительно корпуса штанги. Разработанный грунт падает вниз и с помощью загребающих лап грузится на пластинчатый питатель, проходящий через центральное отверстие вала блокоукладчика.

При фрезерном органе иногда может быть применен комбинированный способ воздействия на забой, с разработкой центральной части забоя рабочим органом, а периферийной - ножевым кольцом проходческого щита. В чистом виде комбинированный способ заложен в проходческий щит диаметром 2,56 м, снабженном фрезерной головкой, вращающейся от двигателя в 20 кет со скоростью 10 об/мин и обладающей, одной степенью свободы в направлении продольной оси щита.

В водонасыщенных песках при условии водопонижения или применения сжатого воздуха используются проходческие щиты с горизонтальными полками.

При гидростатическом давлении, превышающем 3 aтм., могут применяться герметические проходческие щиты с диафрагмой, пространство перед которой заполнено водой, выполняющей роль гидропригрузки.

Отбор грунта в виде пульпы из забоя осуществляется гидроэлеваторами или землесосными установками.

Разработка забоя может производиться гидроструей, которая подается из насадки, или с помощью рабочего органа, напр. в виде однолучевого бара, снабженного цепью с режущими зубьями. Особенностью щита является создание крепи из монолитного прессованного бетона. Помимо поступательно перемещающихся проходческих щитов, известны так называемые вращающиеся щиты.

Проходческие щиты в последнее время начали применять и для открытого способа проходки. В частности, открытый щит шириной 9,02 м, высотой 8,2 м и длиной 13,8 ж был использован при проходке в глинистых грунтах двухпутного перегонного туннеля Фрунзенского радиуса Московского метрополитена. Головная часть щита образована двумя боковыми вертикальными стенками и лобовой стенкой ломаного очертания.

Отбор грунта из пределов головной части на глубину до 7,3 м осуществлялся с помощью экскаватора, оборудованного обратной лопатой и ковшом емкостью 1,4 м3, а установка замкнутых секций обделки в хвостовой части велась козловым краном.

Все механизированные проходческие щиты являются специализированными и каждый из них имеет достаточно узкую область наиболее эффективного использования в определенных горногеологических условиях.

В то же время необходимо создать универсальные механизированные проходческие щиты для проходки в широком диапазоне мягких грунтов (от рыхлых песчаных до плотных глинистых) с быстро изменяющимся способом воздействия на забой, обеспечивающим устойчивость забоя при изменении угла естественного откоса грунта от 90 до 40°, минимальное усилие для внедрения щита в грунт и свободный доступ к забою.

2 . ПРИНЦИП РАБОТЫ ПРОХОДЧЕСКИХ ЩИТОВ

При вращении барабан с ячейками подводится к разгрузочному устройству, где материал под действием силы тяжести, а также под давлением сжатого воздуха выдувается вниз в выходной патрубок. Далее струей сжатого воздуха смесь подхватывается и транспортируется по гибким рукавам к соплу, где происходит затворение смеси водой.

Производительность машины по сухой бетонной смеси для укладки монолита за опалубку 10-12 м3/ч, а для набрызга 5-6 м3/ч; максимальная фракция заполнителей смеси для монолита 40 мм, а для набрызга 30 мм; дальность подачи по горизонтали 200 м, а по вертикали 50 м. Общая установочная мощность 15 кВт; давление в гидросмеси 8 хНПа, размеры: длина 3400 мм, ширина 1080 мм, высота в рабочем положении 2300 мм, а в транспортном 1630 мм; масса машины 4,5 т.

Торкретирование блочных туннелей способом центробежной футеровки и затирка машиной АК. Х ускоряет процесс в 5 раз по сравнению с устройством железобетонной рубашки. Раствор из бункера машины шнеком подается в напорную трубу и, выдавливаясь через продольные щели, попадает на лопатки разбрызгивающей головки, которая, вращаясь с большой скоростью, набрызгивает раствор на внутреннюю поверхность крепи слоем 20-25 мм. При устройстве торкрета большей толщины наносят несколько слоев с суточной выдержкой каждого слоя. Последний слой заглаживается медленно вращающимися лопатками затирочной машины, перемещающейся с помощью лебедки.

Производительность по торкретированию 2 м3/ч средняя скорость отделки туннеля 25-30 м/смену, дальность подачи раствора 100 м, суммарная мощность двигателей 4,5 кВт, габариты машины 2500Х?00Х Х1500 мм, масса 600 кг.

Для немеханизированных щитов прежних конструкций диаметром 2,56 м рекомендуется горнопроходческий комплекс вертикального и горизонтального транспорта, состоящий из подземной части и поверхностной шахтной надстройки. Подземная часть состоит из ленточного питателя, перегружателя, двух блоковозов с рольгангом, подвижной технологической платформы, электровоза АК-2у и лебедки. Шахтная надстройка состоит из копра, бокового гидравлического опрокидывателя, двух транспортообменников и двух рельсовых откаточных путей. Технология комплекса позволяет работать не снижая скорости на трассе длиной до 1 км.

Для опускания и подъема щитов, а также для подъема грунта и подачи тюбингов, растворов и воздуха устраивают шахты горнопроходческим механизированным комплексом «Темп-1» или «Темп-2». Комплекс «Темп-2» состоит из грейфера; аварийного бункера емкостью 12 м3 с пластинчатым питателем, подающим породу через ленточный перегружатель в автомашины; инвентарной крепи из металлических колец; автокрана К-104 и электрооборудования.

Диаметр ствола шахты в проходке 4,3 м, в свету 4 м, глубина до 12 м, скорость проходки 0,8 м/смену, установочная суммарная мощность электродвигателей 13 кВт, масса оборудования 19 т. Бригада состоит из четырех человек.

Для проходки стволов шахт применяется также шахтопроходческий экскаватор ЭШ-1514, созданный на базе элементов экскаватора типа «Беларусь», а для подъема разработанного грунта - кран СПК-Ю00.

Для искусственного замораживания водоносных грунтов рекомендуется передвижная низкотемпературная замораживающая станция ПНС-100, изготовляемая заводом «Компрессор» и смонтированная на двух автоприцепах МАЗ-52224. Установка дает низкотемпературное охлаждение минус 32-37° С через сутки после доставки на место.

3 . РАБОЧИЕ ИНТРУМЕНТЫ ПРОХОДЧЕСКИХ ЩИТОВ

Основные части щита (Рисунок 2)-ножевое 2 и опорное 1 кольца (в некоторых конструкциях установлено единое ножеопорное кольцо) и оболочка 9, в пределах которой монтируют сборную обделку. После разработки породы, находящейся перед ножевым кольцом, щит при помощи щитовых гидроцилиндров 10, опирающихся на последнее кольцо обделки тоннеля, продвигают вперед, в пространство, освободившееся от породы. После этого штоки гидроцилиндров убирают и в оболочке щита монтируют очередное кольцо обделки. Породу забоя крепят щитами из досок, которые прижимают забойными гидроцилиндрами 7.

В пределах опорного и ножевого колец внутреннее пространство щита разделено: горизонтальными перегородками 5 на ярусы и вертикальными перегородками 3 на ячейки. Горизонтальные перегородки имеют выдвижные платформы 4, перемещение которых обеспечивают специальные платформенные гидроцилиндры. В технической литературе прошлых лет издания щитовые, забойные и платформенные гидроцилиндры названы гидравлическими домкратами, или гидродомкратами.

Опорное и ножевое кольца щита собирают из стальных элементов-сегментов, соединяя их болтами подобно тюбингам при сборке кольца обделки. Оболочку щита собирают из стальных листов, изогнутых по цилиндрической поверхности. Листы соединяют между собой, а также с опорным кольцом с помощью болтов с потайной головкой.

Рисунок 2 - Частично механизированный проходческий щит: 1 - опорное кольцо; 2 - ножевое кольцо; 3 - вертикальная перегородка; 4 - выдвижная платформа; 5 - горизонтальная перегородка; 6 - гидравлическая система; 7 - забойный гидроцилиндр; 8 - накладка; 9 - оболочка щита; 10 - щитовой гидроцилиндр; 11 - опорная пята

4 . ВИДЫ ЩИТОВ

В настоящее время для строительства коллекторов и туннелей применяются проходческие щиты нескольких типоразмеров с наружными диаметрами 2-4 м. Щиты изготовляются цельносварными из листовой стали или разборными (очень редко). В зависимости от способа разработки забоя и транспортировки грунта щиты разделяются на механизированые и немеханизированные.

4.1 Немеханизированные щиты

Различают немеханизированные щиты с открытой и закрытой головной частью. Первые применяют для проходки туннелей преимущественно в песчаных и устойчивых грунтах, вторые - для проходки туннелей в плывунах, в илистых и глинистых текуче-пластичных грунтах. Немеханизированные щиты широко используют при сооружении туннелей диаметром до 2,5 м. Их конструкции имеют мало различий.

Цельносварной немеханизированный щит диаметром 2,065 м с открытой головной частью (Рисунок 3) состоит из трех основных частей: режущей (ножевой), опорной и хвостовой. Режущая часть, оснащенная козырьком с клиновидным ножом, предназначена для срезания грунта и внедрения щита в грунт.

Длина ножевой части определяется физико-механическими свойствами разрабатываемых пород, высотой забоя, конструкцией рабочего органа, а также коэффициентом маневренности щита Км, величина которого определяется отношением длины щита L к его диаметру D и принимается 0,4-1,6 в зависимости от диаметра 1 щита и условий его применения. Под защитой режущей части; производится разработка грунта. Мягкие и сыпучие грунты i I-II категорий разрабатываются вручную с помощью проходческих лопат, кайл и ломов. Плотные грунты III-IV категорий разрабатывают с помощью пневматических отбойных молотков, приводимых в действие от передвижных компрессоров. Разрушенный грунт средствами горизонтального и вертикального транспорта эвакуируется на поверхность.

Для внедрения в грунт щит периодически передвигается в заданном направлении посредством гидравлических домкратов, размещенных по периметру корпуса. При передвижке щита неподвижными остаются штоки домкратов, упирающиеся своими башмаками в ранее уложенные элементы туннельной обделки, а цилиндры домкратов, закрепленные в опорной части щита, перемещаются, передвигая щит вперед. Опорная часть, расположенная посередине щита, состоит из трех колец толщиной 30 мм и обеспечивает щиту необходимую прочность и жесткость.

Рисунок 3 - Немеханизированный щит для проходки туннелей

К опорной примыкает хвостовая часть, под защитой которой сооружается одно-два кольца сборной обделки или определенный участок монолитной обделки туннеля. Для продвижения щита башмаки домкратов упираются в ранее уложенные элементы туннельной обделки. При этом штоки домкратов, соединенные с башмаками, остаются неподвижными, а цилиндры, закрепленные в опорной части щита, перемещаются вперед и двигают щит. Щитовые домкраты служат также для удержания блоков обделки в установленном положении или прессования монолитной бетонной или железобетонной обделки. При установке блоков или тюбингов домкраты поджимают и поддерживают каждый установленный блок верхней половины кольца до полной сборки последнего; при этом штоки домкратов выдвигаются, а их цилиндры остаются неподвижными.

В современных щитах устанавливается 14-20 домкратов, развивающих суммарное усилие 200-300 тс (1960-2950 кН). Число домкратов должно быть равным или кратным количеству элементов в кольце крепления стенок сооружения. Домкраты обслуживаются передвижным плунжерным насосом высокого давления (до 29,5 МПа) производительностью 1-3 м3/ч. Насос устанавливается на поверхности вблизи шахты и приводится в действие электродвигателем. Рабочая жидкость (вода) от насоса подается к домкратам через золотниковый распределитель, который управляет последовательностью действия домкратов, обеспечивает прямой и обратный ход штоков, регулирует их скорость.

Скорость проходки туннеля немеханизированным щитом зависит от диаметра щита, категории разрабатываемого грунта, числа и типа щитовых домкратов, мощности насосной установки и составляет 0,8-1,2 пог. м в смену.

4.2 Механизированные щиты

Механизированные щиты - щит (вернее, уже комплекс), на котором почти исключён ручной труд, и практически все операции выполняются оператором с пульта управления. Разработка грунта производится за счёт вращающегося на оси щита стального ротора с резцами, после чего грунт подаётся на конвейер, а с него - на вагонетки. В СССР этот тип щитов был впервые применён в 1949 году.

Механизированные щиты снабжены активными рабочими органами для разработки грунта, оборудованием для укладки блоков и выдачи разработанного грунта через щит на погрузочные средства. Рабочие органы щитов могут быть роторными, штанговыми, экскаваторными, гидромеханическими и т. п. Наибольшее распространение получили щиты с экскаваторными и роторными рабочими органами.

Рассмотрим конструкцию цилиндрического цельносварного механизированного щита диаметром 2,56 м (Рисунок 4,а). Рабочий орган такого щита - роторная часть и неповоротный цилиндр. Роторная часть состоит из переднего конуса, несущего съемные резцы 8 для рыхления грунта, и зубчатого венца с внутренним зацеплением, жестко соединенных между собой боковыми спиральными лопатками 10. Роторная часть приводится во вращение с частотой 10-12 об/мин от электродвигателя мощностью 20 кВт через зубчатый венец и систему передач.

Неповоротный цилиндр с коническим днищем опирается полувтулками на направляющие, вдоль которых он может перемещаться вместе с роторной частью, получая возвратно-поступательное движение от шестнадцати гидравлических домкратов с ходом 1000 мм, размещенных по периметру цилиндрического стального корпуса щита. В верхней части неповоротного цилиндра имеется приемное окно, к которому присоединяется направляющая воронка ленточного конвейера-перегружателя. При вращении роторной части разрушенный резцами грунт непрерывно подхватывается спиральными лопатками и перемещается ими по поверхности неповоротного цилиндра к приемному окну. Через приемное окно и направляющую воронку грунт поступает на ленточный конвейер, загружающий тележки со съемными кузовами. С помощью гидравлических домкратов, развивающих суммарное усилие до 530 тс (5200 кН), рабочий орган может выдвигаться вперед на расстояние до 1 м независимо от движения щита. Одновременно с рабочим органом перемещается и конвейер-перегружатель. После разработки забоя на длину одного кольца обделки рабочий орган отводится назад, щит продвигается вперед и в хвостовой части при помощи блокоукладчика укладывается очередное кольцо обделки.

Рисунок 4 - Механизированные проходческие щиты: а - с роторным рабочим органом; б - с экскаваторным рабочим органом

В качестве обделки для щитов диаметром 2,56 м применяют мелкие и крупные железобетонные трапецеидальные блоки. Блоки в кольцо и кольца между собой соединяются при помощи пазов и гребней. В отдельных блоках предусмотрены отверстия, через которые в свободноетфостранство между обделкой и грунтом нагнетается при помощи растворо-насоса цементный раствор.

Эвакуация грунта на поверхность и подача материалов (элементов сборной обделки, цемента и т.д.) к щиту производятся средствами горизонтального внутритуннельного (двухосные тележки со съемными кузовами, вагонетки, тележки-блоковозки, электрокары) и вертикального (клетьевые подъемники, стреловые краны и т. д.) транспорта.

На рисунке 4,б показан механизированный щит диаметром 2,05 м с экскаваторным рабочим органом, работающим по принципу обратной лопаты. Рабочий орган смонтирован в опорной и ложевой частях корпуса щита, имеет гидравлический привод и автономную систему управления. Грунт из ковша рабочего органа выгружается на ленточный конвейер, загружающий тележки внутритуннельного транспорта. Щит передвигается шестнадцатью гидравлическими домкратами грузоподъемностью 125 т каждый. В хвостовой части щита расположен блокоукладчик для сооружения туннельной обделки.

Скорость проходки туннеля механизированными щитами составляет от 3 до 7 пог. м в смену.

5 . ПРОИЗВОДИТЕЛИ

Lovat Tunnel Equipment (Канада). Канадская компания Ловат и ее тоннелепроходческие машины уже не первый год работают на территории России. Сотрудничество с этой компанией начиналось еще во времена СССР. Проходческие машины «Ловат» хорошо зарекомендовали себя.

Компания «Ловат» продает не только новые машины, она занимается также их восстановлением. Чаще всего, российские заказчики покупают именно такую, восстановленную технику, уже бывшую в употреблении. Оцениваемое оборудование (формы) изготовлено по заказу фирмы Lovat французской компанией CBE Group. Компания производит широкий спектр проходческих комплексов как для горизонтальной, так и для вертикальной проходки с учетом требований заказчиков. Компания не ограничивается производством стандартных машин, но также производит уникальные комплексы для конкретных условий заказчика. Компания имеет собственную технологию производства тоннелей Herrenknecht Traffic Tunnelling Technology с диаметром более 4,2 м, которая используется для производства тоннелей на оборудовании компании по всему миру. Оборудование компании может работать как в мягких, так горных породах, сухих или водонасыщенных грунтах. На официальном сайте компании можно найти список из около 32 проектов для диаметра проходки от 4,7 до 7,5 м, в том числе и для наружного диаметра 5,8-6 м (2 проекта строительства метро в Лос-Анджелесе - США в 2006 и 2008 гг., проект строительства тоннеля во Франции). В с списке есть проект строительства метро в Санкт Петербурге, который стартовал в Росси в 2006 г. (диаметр 5,3 м). По информации ОАО "Метрострой", являющейся заказчиком проходческого щита компании Herrenknecht стоимость щита предназначенного для строительства метро в Санкт Петербурге в 2008 - 2010 гг. составляет 20 000 000 Евро. Wirth (Германия). Компания выполняет проектирование и изготовление широкого спектра проходческих машин и проходческих комплексов, в том числе и проходческих щитов различного диаметра. В списке проектов компании имеются щиты диаметром проходки от 4,56 до 14 м, в том числе щит 5,93 м (Компания-заказчик - CRTG, Китай, строительство подводного тоннеля в скальном грунте). Всего на официальном сайте компании представлено 14 проектов. Hitachi Zosen (Япония). Подразделение компании, занимающееся разработкой и производством проходческих щитов осуществляет свою деятельность с 1976 г. Компания производит проходческие щиты как закрытого, так и открытого типа. Компанией произведены тоннелепроходческие комплексы диаметром (метры): 2,13, 3,28, 4,93, 4,94, 5,54, 5,74, 6,75, 7,15, 7,75, 8,25, 8,96, 9,60, 10,00, 14,14. Всего производителем было получено более чем 1200 заказов от Японских компании и компаний из других стран. Robbins Company (США). Компания, занимающаяся разработкой и производством тоннелепроходческих комплексов. Имеет 50 летний опыт разработки и исследований в области проходческих работ. По информации, размещенной на официальном сайте, компанией осуществлено 4 проекта строительства проходческих комплексов диаметром от 5 до 6 м. (проходка тоннелей в США, Южной Африке, Китае), 15 проектов тоннелепроходческих коплексов с диаметром тоннеля более 6 м, из них 5 проектов - комплексы с диаметром тоннеля более 9 м. Также компанией были построены комплексы от 2 до 5 м для заказчиков из США, Китая, Франции. Также производство тоннелепроходческой техники осуществляют такие компании, как Mitsubishi Heavy Industries, Atlas Copco и Boretec.

ЗАКЛЮЧЕНИЕ

проходческий щит туннель футеровка

Применение щитового способа облегчает выбор трассы подземных коммуникаций, позволяет вести проходку практически в любых грунтах и в любое время года, обеспечивает высокую степень механизации проходческих работ и полную сохранность расположенных над туннелем дорожных покрытий, зданий и сооружений. Основной недостаток этого способа - высокая стоимость проходки.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

1. Бреннер В.А. Щитовые проходческие комплексы / В.А. Бреннер, А.Б. Жабин, М.М. Щеголевский. - М.: Издательство «Горная книга», 2009. - 447 с.

2. Валчев А.Г. Современные щитовые машины с активным пригрузом забоя для проходки тоннелей в сложных инженерно-геологических условиях / А.Г. Валчев, С.Н. Власов, В.П. Самойлов. - М.: «ТА Инжиниринг», 2003. - 70 с.

3. Кантович Л.И. Щитовая проходка подземных выработок II Уголь / Л.И. Кантович.- М.:«Импернум Пресс», 2000. - 225 с.

4. Клорикьян В.Х. Горнопроходческие щиты и комплексы / В.Х. Клорикьян, В.А. Ходош. - М.: «Недра», 1977. - 324 c.

5. Кпорикьян В.Х. Проходческие щиты и комплексы / В.Х. Кпорикьян, В.А. Ходош. - М.: «Импернум Пресс», 1977. - 326 с.

6. Киселев С.Н. Тоннельные машины / С.Н. Киселев, П.А. Часовитии. - М.: «Недра», 1996. - 323 с.

7. Эткин С.М. Сооружение подземных выработок проходческими щитами / С.М. Эткин, В.М. Симоненко. - М.: «Недра», 1980. - 304 с.

Размещено на Allbest.ru

Подобные документы

    Комплексы оборудования для проведения восстающих. Функциональные особенности комплекса оборудования для проходки стволов буровзрывным и комбайновым способом. Оборудование для проведения стволов бурением, его устройство и предъявляемые требования.

    реферат , добавлен 25.08.2013

    Выбор и расчет крепи квершлага, способа и схемы сооружения выработки, механизация проходческих работ. Проектирование взрывных работ. Проветривание и приведение забоя в безопасное состояние. Проведение подземных горных выработок буровзрывным способом.

    курсовая работа , добавлен 13.06.2010

    Определение площади, формы поперечного сечения и вида крепи выработки. Расчет анкерной крепи. Сопротивление пород сжатию в кровле. Технология проведения горной выработки и организация проходческих работ. Разработка графика цикличной организации проходки.

    контрольная работа , добавлен 10.03.2013

    Выбор формы и расчёт размеров поперечного сечения выработки. Цикл проходки откаточного штрека. Подбор проходческого оборудования. Расчет паспортов буро-взрывных работ, проветривания забоя, погрузки породы, крепления. Стоимость проведения горной выработки.

    курсовая работа , добавлен 07.02.2016

    Ознакомление с географическим расположением, гидрогеологическими условиями, шахты имени Костенко. Назначение ленточных конвейеров и электровозов. Принципы механизации работ горной выработки. Вентиляция, дегазация, газовая защита исследуемого забоя.

    дипломная работа , добавлен 24.09.2010

    Выбор формы и определение размеров поперечного сечения штрека. Сущность способа строительства горизонтальной выработки. Расчет паспорта буровзрывных работ и проветривания забоя. Основные мероприятия по безопасному производству проходческих работ в забое.

    курсовая работа , добавлен 20.10.2012

    Проходка откаточного штрека. Расчет крепи, выбор способа и схемы сооружения горной выработки, механизация проходческих работ. Проветривание и проведение забоя в безопасном состоянии. Снабжение сжатым воздухом и промышленной водой. Организация работ.

    курсовая работа , добавлен 20.12.2012

    Угольное месторождение Приозерное, краткая характеристика и размеры карьера. Общий режим работы и производительность карьера. Схема забоя добычного экскаватора ЭРП-2500. Планограмма производства горных работ одним блоком с холостым перегоном экскаваторов.

    курсовая работа , добавлен 23.01.2012

    Способ подготовки горных работ к выемке. Основные рабочие параметры буровых станков. Сопоставление технических характеристик серийно выпускаемых экскаваторов с параметрами развала пород взрывной заходки. Определение оптимальной модели автосамосвала.

    курсовая работа , добавлен 14.05.2011

    Подбор оборудования и выбор узлов насосный центробежной установки для эксплуатации скважины месторождения. Проверка диаметрального габарита погружного оборудования, параметров трансформатора и станции управления. Описание конструкции электродвигателя.

Основным средством механизации горных работ и защиты забоя от обрушения пород на весь проходческий цикл - от разработки породы до возведения обделки - являются щиты. Проходческий щит - это подвижная стальная крепь в виде полого стального цилиндра, лежащего горизонтально вплотную к забою. Форма щита повторяет форму сооружаемой обделки.

Основные части щита (рис. 45)-ножевое 2 и опорное 1 кольца (в некоторых конструкциях установлено единое ножеопорное кольцо) и оболочка 9, в пределах которой монтируют сборную обделку. После разработки породы, находящейся перед ножевым кольцом, щит при пбмощи щитовых гидроцилиндров 10, опирающихся на последнее кольцо обделки тоннеля, продвигают вперед, в пространство, освободившееся от породы. После этого штоки гидроцилиндров убирают и в оболочке щита монтируют очередное кольцо обделки. Породу забоя крепят щитами из досок, которые прижимают забойными гидроцилиндрами 7.

В пределах опорного и ножевого колец внутреннее пространство щита разделено: горизонтальными перегородками 5 на ярусы и вертикальными перегородками 3 на ячейки. Горизонтальные перегородки имеют выдвижные платформы 4, перемещение которых обеспечивают специальные платформенные гидроцилиндры. (В технической литературе прошлых лет издания щитовые, забойные и платформенные гидроцилиндры названы гидравлическими домкратами, или гидродомкратами.)

Опорное и ножевое кольца щита собирают из стальных элементов-сегментов, соединяя их болтами подобно тюбингам при сборке кольца обделки. Оболочку щита собирают из стальных листов, изогнутых по цилиндрической поверхности. Листы соединяют между собой, а также с опорным кольцом с помощью болтов с потайной головкой.

Проходческие щиты разделяют по следующим основным признакам:

по площади поперечного сечения проходимой выработки - на щиты малого диаметра (до 3200мм), среднего диаметра (до 5200 мм) и большого диаметра (свыше 5200 мм);

по степени механизации основных производственных процессов- на щиты частично механизированные и механизированные. В щитах первого типа разработку забоя ведут вручную или взрывным способом, а погрузка и транспортировка породы, возведение обделки и передвижка щита механизированы, в щитах второго типа все основные процессы механизированы;

по области применения щиты разделяют на предназначенные для проходки в обводненных грунтах, для проходки в сыпучих и малоустойчивых грунтах естественной влажности, для проходки в грунтах с коэффициентом крепости от 0,5 до 5 и для проходки в грунтах с коэффициентом крепости более 5.

Рис. 45. Частично механизированный проходческий щит:
1 - опорное кольцо; 2 - ножевое кольцо; 3 - вертикальная перегородка; 4 - выдвижная платформа; 5 - горизонтальная перегородка; 6 - гидравлическая система; 7 - забойный гидроцилиндр; 8 - накладка; 9 - оболочка щита; 10 - щитовой гидроцилиндр; 11 - опорная пята


Рис. 46. Механизированный проходческий комплекс

Проходческие щиты оснащают механизмами для погрузки разработанного грунта на конвейер (транспортер) или непосредственно в вагонетки. В частично механизированных щитах погрузку грунта в вагонетки ведут с помощью погрузочной машины, в щитах малого диаметра - вручную. В механизированных щитах погрузочные органы имеют различное исполнение.

Современные щитовые комплексы обеспечивают выполнение процессов по разработке и креплению лба забоя, погрузке и удалению грунта за пределы комплекса, возведению тоннельных обделок, нагнетанию раствора в заобделочное пространство и т. д.

Комплексы, в которых достигнута полная механизация проходческих работ, называют механизированными комплексами (рис. 46), В таких комплексах щит 2 имеет рабочий орган / для разработки и погрузки породы, конвейер 3 для выдачи породы за пределы щита. Вслед за щитом в сцепе с ним установлен укладчик обделки 4, тоннельный конвейер 5 и другое технологическое оборудование. При проходке в неустойчивых породах рабочий орган (исполнительный) щита наряду с разработкой породы обеспечивает поддержание лба забоя от обрушения.

По принципу действия различают три группы рабочих органов:

непрерывного действия, если разработка грунта происходит одновременно по всей площади забоя (например, рабочий орган роторного типа);

цикличного действия, если разработка грунта происходит в отдельные отрезки времени в отдельных участках забоя (например, рабочий орган экскаваторного типа);

комбинированно действия, когда сочетаются хотя бы по одному из двух типов рабочих органов (например, экскаваторного типа с горизонтальными рассекающими площадками).

Роторные рабочие органы могут быть с плоской или винтовой планшайбой (рис. 47, а) со щелями для выхода грунта или лучевого типа (рис. 47,6). Эти органы в зависимости от крепости пород оснащают пластинчатыми или стержневыми резцами, шарошками и другим инструментом. При вращении режущий инструмент врезается в грунт и разрушает его.

Щит может быть оснащен сменными в зависимости от крепости пород рабочими органами: экскаваторным рабочим органом (рис. 47, в) для работы в супесях, суглинках, глинах; стреловым исполнительным органом с резцовой коронкой (рис. 47, г) для работы в твердых глинах, известняках, песчаниках.

Горизонтальные рассекающие перегородки (площадки) рабочего органа позволяют работать в песках, насыпных грунтах. На горизонтальных перегородках при внедрении их в забой образуются осыпи грунта под углом естественного откоса, обеспечивающие устойчивость забоя (т. е. выполняющие функции временной крепи).

С помощью механизированных комплексов, кроме обычных сборных обделок, сооружают также монолитно-прессованные и сборные обжимаемые в породу обделки. Монолитно-прессованные обделки образуются при уплотнении бетонной смеси усилиями щитовых гидроцилиндров при внедрении щита в забой. После монтажа в хвостовой части щита очередной секции опалубки и нагнетания за нее бетонной смеси щит продвигают вперед, при этом под давлением гидроцилиндров смесь в опалубке уплотняется и непосредственно за щитом остается готовая бетонная обделка. Особенность сборных железобетонных обделок кругового очертания, обжимаемых в окружающий породный массив, состоит в том, что сразу же после их монтажа кольца обделки прижимают к контуру выработки и обделка немедленно вступает в работу, предотвращая развитие горного давления и просадки земной поверхности.


Рис. 47. Схемы рабочих органов механизированных проходческих щитов:
а-роторный с винтовой планшайбой; б - роторный лучевого типа; в - экскаваторного типа; г - фрезерного типа


Рис. 48. Проходческий комбайн 4ПП-2

Щиты в процессе проходки приобретают крен (поворачиваются вокруг оси). Для предотвращения крена в щитах служат элероны (металлические пластины), которые устанавливают в специальные щели в сегментах опорного (ножеопорного) кольца и выдвигают с помощью гидроцилиндров за пределы корпуса щита. Для возможности ведения щита на кривых участках трассы тоннеля необходимо делать одностороннее уширение сечения выработки. С этой целью на рабочем органе щита устанавливают выдвижной копир-резец (копир-шарошку). Управляет копир-резцом при помощи гидравлического механизма машинист щита со своего рабочего места.

Для определения и контроля положения щита в плане и профиле применяют лазерные приборы. Прибор крепят к обделке так, чтобы лазерный луч был направлен параллельно оси тоннеля и находился ниже свода на 1-1,2 м. Для придания лучу нужного направления в плане и для контроля устойчивости луча применяют не менее двух отвесов, а в профиле - не менее двух горизонтальных нитей (используют капроновую леску). По мере удаления щита от лазерного прибора через каждые 100-150 м закрепляют новые отвесы и нити.

Для герметизации строительного зазора и придания кольцам правильного геометрического очертания в щитах устанавливают пневматическое торовое устройство.

Проходческий комбайн (рис. 48) представляет собой самоходную машину на гусеничном ходу 3. Рабочими органами комбайнов служат телескопические стрелы 2 с резцовыми коническими коронками 1. Погрузка разработанной породы с помощью спаренных лап 4 нагребающего типа совмещена с работой рабочего органа. Комбайн является мобильной машиной, в случае необходимости.его можно без демонтажа вывести из забоя своим ходом (что невозможно для проходческих щитов). В отличие от проходческих щитов комбайны можно применять в горных выработках, различных по форме и размерам поперечного сечения. Однако отсутствие на проходческих комбайнах передвижной крепи позволяет использовать их лишь в устойчивых забоях.

Посвящена самому большому в мире проходческому щиту немецкой компании “Херренкнехт АГ” (”Herrenknecht AG”).

Проходческий щит Херренкнехт

Проходческий щит-гигант диаметром 15,2 метра используется для прокладки автотуннеля через центр Мадрида, проходит за сутки до 22 метров. Тоннель (=туннель) длиной 3650 метров должен избавить столицу Испании от пробок.

Проходческий щит компании “Херренкнехт АГ”, Германия

Компания “Херренкнехт АГ” (Германия) производит тоннелепроходческую технику для прокладки тоннелей различного назначения в любых гидрогеологических условиях. По всему миру продано более 1000 микротоннелепроходческих установок Herrenknecht диаметром до 4,2 м, а также около 350 тоннелепроходческих комплексов диаметром более 4,2 м.


В Москве эксплуатируется около 35 микротоннелепроходческих установок компании “Херренкнехт АГ” диаметром от 400 до 2 000 мм, а также ~15 установок в других городах России. Кстати, в Москве на строительстве двухъярусного Серебряноборского тоннеля работает немецкий проходческий щит Herrenknecht S-250 диаметром 14,2 м.

Самые длинные тоннели:

  • Готардский базовый тоннель (Gotthard Base Tunnel , GBT, Швейцария) - железнодорожный тоннель. По проекту его длина равна 57 км (полная длина, включая служебные и пешеходные ходы, - 153,5 км). После завершения строительства в 2016-2017 гг. GBT будет длиннейшим железнодорожным тоннелем в мире. Для прорубки скальных пород используют 6 мощных проходческих щитов, способных проходить до 25-30 метров в сутки.
  • Самым длинным на сегодня является японский тоннель “Сейкан” (Seikan Tunnel ), соединяющий японские острова Хонсю и Хоккайдо. Протяженность тоннеля, открытого для движения 13 марта 1988 года, составляет 53,9 км.

Этапы строительства метро:

Выбор места расположения

В первую очередь метро прокладывают в отдаленные районы столицы. При этом учитывается, сколько там проживает людей и сколько жилья построят в будущем, а также есть ли в районе промышленные предприятия, бизнес-кластеры и большие офисные центры, в которые ежедневно люди приезжают на работу. На выбор места для новой станции влияет и такой фактор, как заселенность соседних районов и даже Подмосковья. Зачастую станцию решают строить там, где движение автомобилей наиболее плотное.

Инженерные изыскания

На этом этапе происходит сбор сведений, необходимых для дальнейшей разработки технико-экономического обоснования проекта и рабочей документации на строительство. В состав инженерных изысканий для строительства метро должны входить геологические, геодезические, экологические и другие виды изысканий по необходимости.

Проектирование

На этом этапе определяются глубина заложения, типы конструкций и способ проходки подземных тоннелей, составляется проектно-сметная документация. Проще говоря, проектировщики определяют оптимальный «маршрут» подземной дороги и место заложения станции.

Проект готовится таким образом, чтобы строительство не повредило архитектурные памятники, здания на поверхности, парки и скверы и при этом стоило бюджету как можно меньше затрат. Если трасса тоннеля проходит вблизи уже существующих объектов, то при необходимости разрабатываются методы инженерной защиты этих сооружений от шума, вибраций и блуждающих токов, возникающих при строительстве и эксплуатации линий метрополитена.

Строительство

От того, какие объекты расположены на поверхности, главным образом зависит, как глубоко уйдет новая станция. Под уличными магистралями метро может «спрятаться » совсем на небольшой глубине - менее 20 метров. Это самый экономичный вариант, который выбран для большинства новых станций. Если сверху - жилые дома, то «спускаться» придется глубже.

Различают закрытый способ строительства, без вскрытия поверхности, и открытый способ, при котором тоннели и станции строятся, соответственно, в разрытых траншеях и котлованах и после засыпаются грунтом.

Закрытый способ применяется при строительстве линий глубокого заложения, станции мелкого заложения строятся преимущественно открытым способом.





Строительство «глубокого» метро начинается с прокладки шахтного ствола для клети (лифта), который будет доставлять метростроевцев и необходимое оборудование «на рабочее место». Площадку, которая вырывается вокруг ствола, можно сравнить с огромной лестничной клеткой. Отсюда начинается прокладка тоннеля. На той же клети после бурения ежедневно на поверхность вывозятся десятки тонн грунта.

Чем глубже станция, тем она дороже и требует больше ресурсов. В 2011 году в Москве было решено большинство новых станций прокладывать открытым способом. Достаточно выкопать котлован, установить бетонные конструкции, выполнить обратную засыпку и уже внутри полученного коридора укладывать пути. Это не только дешевле, но и гораздо быстрее, чем строить станции глубокого заложения.





Проходка и укрепление тоннелей осуществляется чугунными тюбингами или водонепроницаемыми железобетонными блоками обделки.

Монтаж эскалаторов

Параллельно с прокладкой тоннеля строится сама станция и система переходов, затем в метро прокладываются коммуникации и монтируются эскалаторы.

На станциях метро глубокого залегания эскалаторы устанавливаются в длинных наклонных тоннелях - выходах. Большая длина таких эскалаторов накладывает особые требования к прочности их конструкции и надежности тормозов.

При мелком заложении используются поэтажные эскалаторы. Что важно - все новые станции также оборудуются лифтами для людей с ограниченными физическими возможностями.





Внутреннее оформление

Столичный метрополитен по праву считается красивейшим в мире. В большинстве стран станции утилитарны и неотличимы одна от другой. Несмотря на то что теперь станции Московского метрополитена строятся по типовым проектам, для каждой из них разрабатывается свое, особенное архитектурное и дизайнерское решение.

Проекты дизайна строящихся станций московского метрополитена можно посмотреть .

ТИПОВЫЕ ПРОЕКТЫ:

Для станций мелкого заложения используются три основных типа:

Сводчатая станция, с открытой, без колонн, платформой;

Двухпролетная с колоннами посередине платформы (для станций мелкого заложения);

Трехпролетная (для станций мелкого заложения).

В центре Москвы, ввиду плотности исторической застройки, используется старый тип станций глубокого заложения двух видов - колонные и пилонные.


Технологии в помощь метростроевцам

Тоннелепроходческие комплексы

В 30-е годы первые станции московского метро строились вручную: киркой и лопатой. Сегодня же в арсенале метростроителей - передовые технологии. Для прокладки тоннелей метро используют полностью автоматизированную сверхпрочную конструкцию под названием «проходческий щит». Наверное, ее можно сравнить со «стальным червем», который просверливает путь в толще породы, оставляя за собой готовый тоннель.

По легенде, изобретатель первого в мире «проходческого щита» англичанин Марк Брунель действительно придумал такую конструкцию после того, как пригляделся к «работе» обыкновенного корабельного червя, когда служил на флоте. Он заметил, что голова моллюска покрыта жесткой раковиной, с помощью зазубренных краев которой червь буравил дерево, оставляя за собой на стенках хода гладкий защитный слой извести.


Идея машины, которая в разы упростила прокладку тоннелей, оформилась в конструкцию в 1817 году, когда русский император Александр I обратился к Брунелю с просьбой спроектировать тоннель под Невой в Санкт-Петербурге. Правда, в России инженеру поработать так и не удалось - император в конечном итоге решил возвести в намеченном месте мост.

Тем не менее в 1818 году первый щит Брунеля был запатентован, а в 1825 году с его помощью началось строительство тоннеля под Темзой.

В первой машине грунт выбирали сразу 36 шахтеров, располагавшихся каждый в своей ячейке. После выемки грунта на несколько сантиметров щит сдвигали немного вперед. Это была непростая работа, учитывая постоянно просачивающуюся воду (дно реки располагалось всего в нескольких метрах выше сводов этого двойного тоннеля). Несколько наводнений в забое унесли жизни семи рабочих, а однажды чуть не погиб сын Брунеля. Более того, на подземной стройке не раз вспыхивал болотный газ. И всё же работа завершилась триумфом.

В первый же день после открытия удивительного сооружения через тоннель прошли 15 тысяч человек. С тех пор Великобритания заслуженно считается пионером щитовой проходки, а сам щитовой метод в специальной литературе получил название «лондонский».

В нашей стране в метростроении проходческий щит был впервые использован в 1934 году для проходки сложного участка первой очереди московского метро между Театральной площадью и Лубянкой. А при строительстве второй очереди московского метро на трассах одновременно уже работало 42 щита - рекорд по объему используемой техники. С тех пор по этой технологии сооружено более 70% метротоннелей столицы.


На первых щитах, как уже отмечалось, грунт выбирался рабочими вручную с помощью отбойного молотка и удалялся через уже построенный тоннель на вагонетках. Для движения щита вперед использовались винтовые домкраты, которые упирались в готовый участок тоннельной обделки и толкали машину вперед.

Размеры тоннелей росли, совершенствовалась и конструкция «червя»: в передней его части появились горизонтальные площадки, которые позволили рабочим разрабатывать грунт одновременно с двух (а иногда и более) ярусов. Однако из-за большого количества ручного труда и частых аварий скорость проходки оставляла желать лучшего.

Значительно ускорило процесс использование сборной обделки из крупных элементов - первоначально - чугунных тюбингов. Гигантские кольца, формирующие тоннели, стали собирать из нескольких элементов.

Следующим этапом «эволюции» тоннелепроходческих комплексов стала разработка конструкций с так называемым «грунтопригрузом». При работе такого щита порода подается сначала в герметичную камеру, из которой грунт по принципу «мясорубки» удаляется с помощью шнекового конвейера.

Сегодня тоннели строятся в самых сложных инженерно-геологических условиях, и современные щиты рассчитаны на проходку тоннелей в различных грунтах, в том числе и в неустойчивых. Комплексы работают в два цикла: сначала разрабатывают грунт, затем возводят обделку, производя монтаж блоков. Средняя скорость «проходки» щитов сегодня - 250 - 300 м в месяц, средняя стоимость - 13 - 15 млн евро.

Московские строители первыми в мире с помощью тоннелепроходческих щитов стали прокладывать наклонные тоннели для эскалаторных зон . По заказу Мосметростроя канадская фирма Lovat разработала и изготовила тоннелепроходческий комплекс с наружным диаметром 11 м. Именно с его использованием столичные метростроевцы впервые совершили щитовую проходку тоннеля для эскалаторов. Это произошло на станции «Марьина роща» Люблинско-Дмитровской линии метро.





Кстати, будни метростроителей вовсе не лишены романтики: когда-то Ричард Ловат, основатель всемирно известной фирмы-изготовителя тоннелепроходческих щитов LOVAT, решил, что все комплексы, произведенные его компанией, будут носить женские имена в честь покровительницы подземных работ святой Барбары. С его легкой руки родилась традиция - присваивать щитам женские имена. Вот почему в Москве трудятся машины с именами «Клавдия», «Катюша», «Полина» и «Ольга».

Решение геологических проблем

Самый коварный враг проходчиков подземных шахт - это плывуны: массы почти пылеобразного песка с примесью 10 - 15% глины, как губка пропитанного водой.

Еще в 30-е годы прошлого века, когда в столице строилось первое метро, метростроители столкнулись с очень непростыми гидрогеологическими условиями. Тогда же была применена система против обрушения грунта и других типичных проблем, угрожающих тоннелям, которая по сей день считается одной из самых продуманных и надежных. Речь идет о заморозке грунта, основанной на простой, но эффективной системе.

Различают несколько способов замораживания, старейший из них - так называемый «рассольный» .

Он состоит в том, что место работ отгораживается от общей массы водоносного грунта стеной из мерзлоты. Замороженный грунт в метр-два толщиной при температуре -12 градусов практически выдерживает любое давление горных пород и прекрасно противостоит проникновению грунтовых вод. Как же заставить холод спуститься под землю? Это получается с помощью искусственных приспособлений из специальных холодильных машин.

Холодильная машина основана на том, что хладагент (жидкий аммиак, фреон и т.д.), который из цистерн пускают в подготовленные замораживающие колонки, при своем испарении отбирает у окружающей среды теплоту. Его пары вновь сжижаются с помощью компрессора и конденсатора, а холод, образовавшийся в испарителе, идет на охлаждение незамерзающего рабочего рассола хлористого кальция. Рассол при температуре -25 градусов поступает в охлаждающую систему. Для ее установки по контуру выработки пробуриваются скважины диаметром 150 - 200 миллиметров на расстоянии одного метра друг от друга. В скважины опускаются замораживающие колонки, состоящие из двойных труб. Замораживающий рассол поступает по средней трубе, а по наружной трубе после естественного нагрева в грунте возвращается в холодильную машину. Таким образом, циркуляция рассола происходит непрерывно.

Примерно через месяц работы холодильной машины грунт вокруг отдельных замораживающих колонок смерзается в монолитную массу, защищающую место выработки от проникновения грунтовых вод и осыпания стенок. Теперь холодильная машина должна лишь поддерживать кольцо мерзлоты до тех пор, пока не будут произведены выработка и закрепление ее стенок.

Более современный способ - низкотемпературное замораживание с использованием жидкого азота . Он представляет собой бесцветную жидкость, температура испарения которой очень низка (при атмосферном давлении она равна -195,8 о С).

Получают жидкий азот на специальных заводах путем сжижения атмосферного воздуха при низких температурах и последующего разделения его на жидкий азот и кислород, имеющие разные температуры испарения. Жидкий азот транспортируют в специальных емкостях (танках).

В отличие от других промышленных хладагентов (аммиака, фреона), которые можно использовать только в замкнутой системе холодильной установки, жидкий азот используют однократно (испаряющийся газ выпускают в окружающую среду).

Способ низкотемпературного замораживания с применением жидкого азота обладает рядом преимуществ по сравнению с обычным (рассольным) замораживанием. При замораживании жидким азотом не нужны замораживающие станции, а также сети трубопроводов. Доставленный на стройплощадку жидкий азот из цистерн пускают сразу в замораживающие колонки. Скорость замораживания увеличивается, что особенно важно при больших скоростях фильтрации грунтовых вод, а также при поступлении термальных и минерализованных вод. На замораживание 1 м 3 грунта с содержанием воды до 30% расходуется 1000 л жидкого азота. Жидкий азот взрыво- и пожаробезопасен и нетоксичен.

Однако оба этих способа в последнее время применяются достаточно редко. Жидкий азот - удовольствие неоправданно дорогое, к тому же на «схватку» грунта уходит более месяца. Поэтому заморозка сегодня используется лишь при проходке наклонных эскалаторных тоннелей.

Для прочих случаев есть более совершенная и достаточно экономичная альтернатива - технология струйной цементации грунтов, или jet grouting . Это метод закрепления грунтов, основанный на одновременном разрушении и перемешивании грунта высоконапорной струей цементного раствора. В результате струйной цементации грунта в нем образуются цилиндрические колонны диаметром 600 - 2000 мм.

Технология появилась практически одновременно в трех странах - Японии, Италии, Англии. Инженерная идея оказалась настолько плодотворной, что в течение последнего десятилетия она мгновенно распространилась по всему миру.

Сущность технологии заключается в использовании энергии высоконапорной струи цементного раствора для разрушения и одновременного перемешивания грунта с цементным раствором в режиме mix-in-place (перемешивание на месте). В результате в грунтовом массиве формируются сваи из нового материала - грунтобетона - с достаточно высокими несущими и противофильтрационными характеристиками.

Устройство свай из грунтобетона выполняется в два этапа: производство прямого (бурение скважины) и обратного хода буровой колонны. В процессе обратного хода производят подъем колонны с одновременным ее вращением.

С помощью jet grouting получают очень прочный котлован, строят надежные основания под любые строения. В шахматном порядке создают свайное поле, одна свая перекрывает другую, и получается монолит - скала. И на ней можно строить что угодно. Эта технология особенно эффективна, когда приходится возводить объекты в песчаном грунте, в мягкопластичной глине или в других мягких грунтах.

Благодаря этим технологиям сегодня метростроевцы могут работать в самых сложных геологических условиях, прокладывая тоннели, которые приводят метро в новые районы столицы.

«Драгоценные » инструменты

Не обошлось в метростроении и без нанотехнологий. Сегодня строители могут использовать инновационные инструменты - алмазные рабочие сверла, фрезы и жала .

Изначально это ноу-хау использовалось для сверления железобетонов и других строительных материалов и оказалось настолько удобным, что стало использоваться для сложных горнопроходческих работ в скальном грунте. Она значительно повышает уровень безопасности работ и скорость проходки - строительство ускоряется буквально в разы. Интересно, что стоимость "алмазного" оборудования не намного выше обычного - разница в цене составляет всего 10 - 15%.

Традиционные морально устаревшие инструменты не в состоянии обеспечить такое количество технологических преимуществ. Так, алмазное сверло может делать отверстия в любой плоскости и под любым углом, при помощи контурного метода можно получить правильные прямоугольные отверстия любой нужной величины, при этом получается идеальный контур. "Драгоценные" инструменты позволяют работать в самых узких и тесных пространствах, им под силу материал любой твердости. Что немаловажно - метод бесшумен и экологичен.

Новый тоннелепроходческий механизированный комплекс (ТПМК) приступил к строительству тоннеля от станции «Косино» в сторону «Нижегородской улицы» Кожуховской линии метро, сообщил журналистам заместитель мэра Москвы по градостроительной политике и строительству Марат Хуснуллин.

«Сегодня в Москве произошло знаковое событие в метростроении. Мы впервые в истории запускаем щит диаметром более 10 метров - размером фактически с полноценное трехэтажное здание. Два поезда будут ходить в одном тоннеле. Это совершенно новые технологии, которые раньше в Москве не применялись. За очень короткое время была проделана большая работа, щит собран за 27 дней. Его вес - 1600 тонн», - сказал М. Хуснуллин.

По его словам, машину фирмы Herrenknecht AG изготовили специально для Москвы в Германии. На создание щита потребовался почти год. Длина ТПМК - 66 метров.

«Самой тяжелой частью комплекса является ротор, который весит 156 тонн», - добавил М. Хуснуллин.

Глава Стройкомплекса сравнил работу ТПМК с механизмом мясорубки.

«Машина перемалывает породу как мясорубка и передает на конвейеры, затем грунт вывозится. Скорость работы щита - 350 метров в месяц. Грубо говоря, в день он должен проходить 10 метров. Это высокая скорость, но она зависит от грунтов», - пояснил М. Хуснуллин.

Он отметил, что проходку планируется закончить к концу 2017 года.

«В дальнейшем тоннелепроходческий комплекс будет задействован на строительстве Третьего пересадочного контура метро . Время работы щита расписано по суткам», - уточнил заммэра.


Обслуживать щит будет бригада из 49 человек в каждую смену.

Из Германии в Москву щит доставляли четырьмя видами транспорта: автотранспортом завода-изготовителя в речной порт в Германии, затем речным транспортом по этой стране. Оттуда через Балтийское море ТПМК привезли в Санкт-Петербург, а затем автоколонной доставили в Москву.

Такие комплексы нужны для возведения двухпутных тоннелей большого диаметра, что позволит построить станции с двумя боковыми платформами. Строительство метро по этой технологии дает экономию до 30% по сравнению с традиционными проектами.

Напомним, в Москве традиционно строили однопутные тоннели метро, в которых поезд движется в одном направлении. Платформа располагается посередине.

При строительстве двухпутных тоннелей платформы станции располагаются по бокам, а поезда следуют навстречу друг другу в центральной части платформы.

Подробнее о двухпутных тоннелях метро и машинах, которые их строят, читайте в

Наша справка

Кожуховскую ветку метро планируется открыть в 2018 году. Запуск этой линии позволит значительно улучшить транспортное обслуживание жителей нескольких районов - Нижегородский , Рязанский , Выхино-Жулебино , Косино-Ухтомский , Некрасовка , Текстильщики , Кузьминки и городского поселения Люберцы Московской области.

Новая ветка метро также позволит перераспределить пассажиропотоки Таганско-Краснопресненской линии, которая сегодня работает с перегрузом в 1,3 раза. Сократится и время пребывания пассажиров в пути - на 15-20 минут.