Ремонт Стены Уход

Статистическая вероятность события а. Классические и статистические определения вероятности

Для практической деятельности необходимо уметь сравнивать события по степени возможности их наступления. Рассмотрим классический случай. В урне находится 10 шаров, 8 из них белого цвета, 2 черного. Очевидно, что событие «из урны будет извлечен шар белого цвета» и событие «из урны будет извлечен шар черного цвета» обладают разной степенью возможности их наступления. Поэтому для сравнения событий нужна определенная количественная мера.

Количественной мерой возможности наступления события является вероятность . Наиболее широкое распространение получили два определения вероятности события: классическое и статистическое.

Классическое определение вероятности связано с понятием благоприятствующего исхода. Остановимся на этом подробнее.

Пусть исходы некоторого испытания образуют полную группу событий и равновозможны, т.е. единственно возможны, несовместны и равновозможны. Такие исходы называют элементарными исходами , или случаями . При этом говорят, что испытание сводится к схеме случаев или «схеме урн », т.к. любую вероятностную задачу для подобного испытания можно заменить эквивалентной задачей с урнами и шарами разных цветов.

Исход называется благоприятствующим событию А , если появление этого случая влечет за собой появление события А .

Согласно классическому определению вероятность события А равна отношению числа исходов, благоприятствующих этому событию, к общему числу исходов , т.е.

, (1.1)

где Р(А) – вероятность события А ; m – число случаев благоприятствующих событию А ; n – общее число случаев.

Пример 1.1. При бросании игральной кости возможны шесть исходов – выпадение 1, 2, 3, 4, 5, 6 очков. Какова вероятность появления четного числа очков?

Решение. Все n = 6 исходов образуют полную группу событий и равновозможны, т.е. единственно возможны, несовместны и равновозможны. Событию А – «появление четного числа очков» – благоприятствуют 3 исхода (случая) – выпадение 2, 4 или 6 очков. По классической формуле вероятности события получаем

Р(А) = = .

Исходя из классического определения вероятности события, отметим ее свойства:

1. Вероятность любого события заключена между нулем и единицей, т.е.

0 ≤ Р (А ) ≤ 1.

2. Вероятность достоверного события равна единице.

3. Вероятность невозможного события равна нулю.

Как было сказано ранее, классическое определение вероятности применимо только для тех событий, которые могут появиться в результате испытаний, обладающих симметрией возможных исходов, т.е. сводящихся к схеме случаев. Однако существует большой класс событий, вероятности которых не могут быть вычислены с помощью классического определения.

Например, если допустить, что монета сплющена, то очевидно, что события «появление герба» и «появление решки» нельзя считать равновозможными. Поэтому формула для определения вероятности по классической схеме в данном случае неприменима.

Однако существует другой подход при оценке вероятности событий, основанный на том, насколько часто будет появляться данное событие в произведенных испытаниях. В этом случае используется статистическое определениевероятности.

Статистической вероятностью события А называется относительная частота (частость) появления этого события в n произведенных испытаниях, т.е.

, (1.2)

где Р * (А) – статистическая вероятность события А ; w(A) – относительная частота события А ; m – число испытаний, в которых появилось событие А ; n – общее число испытаний.

В отличие от математической вероятности Р(А) , рассматриваемой в классическом определении, статистическая вероятность Р * (А) является характеристикой опытной , экспериментальной . Иначе говоря, статистической вероятностью события А называется число, относительно которого стабилизируется (устанавливается) относительная частота w(А) при неограниченном увеличении числа испытаний, проводимых при одном и том же комплексе условий.

Например, когда про стрелка говорят, что он попадает в цель с вероятностью 0,95, то это означает, что из сотни выстрелов, произведенных им при определенных условиях (одна и та же цель на том же расстоянии, та же винтовка и т.д.), в среднем бывает примерно 95 удачных. Естественно, не в каждой сотне будет 95 удачных выстрелов, иногда их будет меньше, иногда больше, но в среднем при многократном повторении стрельбы в тех же условиях этот процент попаданий будет оставаться неизменным. Цифра 0,95, служащая показателем мастерства стрелка, обычно очень устойчива , т.е. процент попаданий в большинстве стрельб будет для данного стрелка почти один и тот же, лишь в редких случаях отклоняясь сколько-нибудь значительно от своего среднего значения.

Еще одним недостатком классического определения вероятности (1.1 ), ограничивающим его применение, является то, что оно предполагает конечное число возможных исходов испытания. В некоторых случаях этот недостаток можно преодолеть, используя геометрическое определение вероятности, т.е. находя вероятность попадания точки в некоторую область (отрезок, часть плоскости и т.п.).

Пусть плоская фигура g составляет часть плоской фигуры G (рис. 1.1). На фигуру G наудачу бросается точка. Это означает, что все точки области G «равноправны» в отношении попадания на нее брошенной случайной точки. Полагая, что вероятность события А – попадания брошенной точки на фигуру g – пропорциональна площади этой фигуры и не зависит ни от ее расположения относительно G , ни от формы g , найдем

Теория вероятностей – математическая наука, изучающая закономерности случайных явлений. Под случайными явлениями пони-маются явления с неопределенным исходом, происходящие при неоднократном воспроизведении определенного комплекса условий.

Например, при бросании монеты нельзя предсказать, какой стороной она упадет. Результат бросания монеты случаен. Но при дос-таточно большом числе бросаний монеты существует определенная закономерность (герб и решетка выпадут примерно одинаковое число раз).

Основные понятия теории вероятностей

Испытание (опыт, эксперимент) - осуществление некоторого определенного комплекса условий, в которых наблюдается то или иное явление, фиксируется тот или иной результат.

Например: подбрасывание игральной кости с выпадением числа очков; перепад температуры воздуха; метод лечения заболевания; некоторый период жизни человека.

Случайное событие (или просто событие) – исход испытания.

Примеры случайных событий:

    выпадение одного очка при подбрасывании игральной кости;

    обострение ишемической болезни сердца при резком повышении температуры воздуха летом;

    развитие осложнений заболевания при неправильном выборе метода лечения;

    поступление в вуз при успешной учебе в школе.

События обозначают прописными буквами латинского алфа-вита: A , B , C ,

Событие называется достоверным , если в результате испытания оно обязательно должно произойти.

Событие называется невозможным , если в результате испы-тания оно вообще не может произойти.

Например,если в партии все изделия стандартные, то извлечение из неё стандартного изделия - событие достоверное, а извлечение при тех же условиях бракованного изделия – событие невозможное.

КЛАССИЧЕСКОЕ ОПРЕДЕЛЕНИЕ ВЕРОЯТНОСТИ

Вероятность является одним из основных понятий теории вероятностей.

Классической вероятностью события называется отношение числа случаев, благоприятствующих событию , к общему числу случаев, т.е.

, (5.1)

где
- вероятность события ,

- число случаев, благоприятствующих событию ,

- общее число случаев.

Свойства вероятности события

    Вероятность любого события заключена между нулем и единицей, т.е.

    Вероятность достоверного события равна единице, т.е.

.

    Вероятность невозможного события равна нулю, т.е.

.

(Предложить решить несколько простых задач устно).

СТАТИСТИЧЕСКОЕ ОПРЕДЕЛЕНИЕ ВЕРОЯТНОСТИ

На практике часто при оценке вероятностей событий основываются на том, насколько часто будет появляться данное событие в произведенных испытаниях. В этом случае используется статистическое определение вероятности.

Статистической вероятностью события называется предел относительной частоты (отношение числа случаев m , благоприятствующих появлению события , к общему числу произведенных испытаний), когда число испытаний стремится к бесконечности, т.е.

где
- статистическая вероятность события ,
- число испытаний, в которых появилось событие , - общее число испытаний.

В отличие от классической вероятности, статистическая вероятность является характеристикой опытной. Классическая вероятность служит для теоретического вычисления вероятности события по заданным условиям и не требует, чтобы испытания проводились в действительности. Формула статистической вероятности служит для экспериментального определения вероятности события, т.е. предполагается, что испытания были проведены фактически.

Статистическая вероятность приблизительно равна относительной частоте случайного события, поэтому на практике за статистическую вероятность берут относительную частоту, т.к. статистическую вероятность практически найти нельзя.

Статистическое определение вероятности применимо к случайным событиям, которые обладают следующими свойствами:

Теоремы сложения и умножения вероятностей

Основные понятия

а) Единственно возможные события

События
называют единственно возможными, если в результате каждого испытания хотя бы одно из них наверняка наступит.

Эти события образуют полную группу событий.

Например, при подбрасывании игрального кубика, единственно возможными являются события выпадения граней с одним, двумя, тремя, четырьмя, пятью и шестью очками. Они образуют полную группу событий.

б) События называют несовместными , если появление одного из них исключает появление других событий в одном и том же испытании. В противном случае их называют совместными.

в) Противоположными называют два единственно возможных события, образующих полную группу. Обозначают и .

г ) События называют независимыми , если вероятность наступления одного из них не зависит от совершения или несовершения других.

Действия над событиями

Суммой нескольких событий называется событие, состоящее в наступлении хотя бы одного из данных событий.

Если и – совместные события, то их сумма
или
обозначает наступление или события A, или события B, или обоих событий вместе.

Если и – несовместные события, то их сумма
означает наступление или события , или события .

Сумму событий обозначают:

Произведением (пересечением) нескольких событий называется событие, состоящее в совместном наступлении всех этих событий.

Произведение двух событий обозначают
или
.

Произведение событий обозначают

Теорема сложения вероятностей несовместных событий

Вероятность суммы двух или нескольких несовместных событий равна сумме вероятностей этих событий:

Для двух событий;

- для событий.

Следствия:

а) Сумма вероятностей противоположных событий и равна единице:

Вероятность противоположного события обозначают :
.

б) Сумма вероятностей событий, образующих полную группу событий, равна единице: или
.

Теорема сложения вероятностей совместных событий

Вероятность суммы двух совместных событий равна сумме вероятностей этих событий без вероятностей их пересечения, т.е.

Теорема умножения вероятностей

а) Для двух независимых событий:

б) Для двух зависимых событий

где
– условная вероятность события , т.е. вероятность события , вычисленная при условии, что событие произошло.

в) Для независимых событий:

.

г) Вероятность наступления хотя бы одного из событий ,образующих полную группу независимых событий:

Условная вероятность

Вероятность события , вычисленная при условии, что произошло событие , называется условной вероятностью события и обозначается
или
.

При вычислении условной вероятности по формуле клас-сической вероятности число исходов и
подсчитывается с учетом того, что до совершения события произошло событие .

Вероятность проявляет себя, когда один и то же случайный эксперимент проводится много раз, причем так, что результаты уже проведенных экспериментов никак не влияют на последующие. При этих условиях частота наступления события при неограниченном возрастании числа экспериментов стремится к вероятности события.

Рассмотрим случайный эксперимент, заключающийся в том, что подбрасывается игральная кость, сделанная из неоднородного материала. Ее центр тяжести не находится в геометрическом центре. В этом случае мы не можем считать исходы (выпадение единицы, двойки и т.д.) равновероятными. Из физики известно, что кость чаще будет падать на ту грань, которая ближе к центру тяжести. Как определить вероятность выпадения, например, трех очков? Единственное, что можно сделать, это подбросить эту кость n раз (где n -достаточно большое число, скажем n =1000 или n =5000), подсчитать число выпадений трех очков n 3 и считать вероятность исхода, заключающегося в выпадении трех очков, равной n 3 /n - относительной частоте выпадения трех очков. Аналогичным образом можно определить вероятности остальных элементарных исходов - единицы, двойки, чет­верки и т.д.

Классическое определение вероятности предполагает, что все элементарные исходы равновозможны. О равновозможности исходов опыта заключают в силу соображений симметрии (как в случае монеты или игрального кубика). Задачи, в которых можно исходить из соображений симметрии, на практике встречаются редко. Во многих случаях трудно указать основания, позволяющие считать, что все элементарные исходы равновозможны. В связи с этим появилась необходимость введения еще одного определения вероятности, называемого статистическим. Чтобы дать это определение, предварительно вводят понятие относительной частоты события.

Определение 18.2.2. Относительной частотой события, или частотой , называется отношение

числа опытов, в которых появилось это событие, к числу всех произведенных опытов. Обозначим частоту события А через W(A), тогда по определению W(A)= m/n ,

где m - число опытов, в которых появилось событие А; n - число всех произведенных опытов.

Частота события обладает следующими свойствами.

1. Частота случайного события есть число, заключенное между нулем

и единицей:

0< W(A) < 1

2. Частота достоверного события Ω равна единице:

W(Ω) = 1

3. Частота невозможного события Ø равна:

W(Ø)=0.

4. Частота суммы двух несовместных событий А и В равна сумме



частот этих событий:

W(A + В) = W(A) + W(B)

Наблюдения позволили установить, что относительная частота обладает свойствами статистической устойчивости: в различных сериях многочленных испытаний (в каждом из которых может появиться или не появиться это событие) она принимает значения, достаточно близкие к некоторой постоянной. эту постоянную, являющуюся объективной числовой характеристикой явления, считают вероятностью данного события.

Определение 18.2.3.(Статистической) вероятностью события называется число, около которого группируются значения частоты данного события в различных сериях большого числа испытаний.

Более строго, статистическая вероятность P( w i) определяется как предел относительной частоты появления исхода w i в процессе неограниченного увеличения числа случайных экспериментов n , то есть

где m n (w i ) – число случайных экспериментов (из общего числа n произведенных случайных экспериментов), в которых зарегистрировано появление элементарного исхода w i .

В случае статистического определения вероятность обладает теми же свойствами, что и вероятность, определенная по классической схеме:

свойствами: 1) вероятность достоверного события равна единице;

2) вероятность невозможного события равна нулю; 3) вероятность

случайного события заключена между нулем и единицей; 4) вероятность

суммы двух несовместных событий равна сумме вероятностей этих событий.

Пример . Из 500 взятых наудачу деталей оказалось 10 бракованных. Какова частота бракованных деталей?

W = 10/500 = 1/50 = 0,2

Геометрическая вероятность

Классическое определение вероятности предполагает, что число элементарных исходов конечно. На практике встречаются опыты, для которых множество таких исходов бесконечно.

Чтобы преодолеть недостаток классического определения вероятности, состоящий в том, что оно неприменимо к испытаниям с бесконечным числом исходов, вводят геометрические вероятности – вероятности попадания точки в область.



Пусть эксперимент состоит в случайном выборе точки из некоторой области. Полагаем выбор любой точки равновозможным. Заданную в пространстве область обозначим W. В эксперименте, связанном со случайным выбором только одной точки из W, множество W является пространством элементарных событий. Случайными событиями в этом случае можно считать разные подмножества из W. Будем говорить, что случайное событие А наступило, если наугад выбранная точка x принадлежит подмножеству А, т.е.

Определение 18.2.4.

Пусть W – некоторый отрезок, L – его длина. А – отрезок длины l, принадлежащий W . Событие А состоит в попадании точки, брошенной в большой отрезок в А. Тогда

Аналогично, если множествомW элементарных исходов случайного эксперимента является фигура на плоскости площади S, а область А, ее подмножество, куда может попасть случайно брошенная на W точка, имеет площадь s, соответствующая вероятность события А – попадания в область А тогда

И, наконец, если речь идет об объемных фигурах, соответственно, W объема V и входящей в нее области А объема v

Замечание 18.2.3. . Строго говоря, рассматриваемый здесь подход требует введения более общей характеристики (функции) множества – его меры (mes (A) ), частными случаями которой являются длина, площадь и объем, и тогда вероятность события А будет отношением меры множества А к мере множества W

Пример 1. В квадрат вписан круг. Точка случайным образом бросается в квадрат. Какова вероятность того, что она попадет в круг? Согласно приведенной формуле соответствующая вероятность будет отношением площади круга к площади квадрата.

Пример 2. Два человека обедают в кафе в обеденный перерыв, который начинается у них в одно время и продолжается 1 час, от 12 до 13 часов. Каждый из них приходит в произвольный момент времени и обедает в течение 10 минут. Какова вероятность их встречи?

Пусть x - время прихода в кафе первого, а y - время прихода второго . Встретиться они могут только тогда, когда оба находятся в кафе.

Если второй пришел не позже первого (x ³ y ), то встреча произойдет при условии 0 £ x - y £ 1/6..

Таким образом, в первом случае нас будет удовлетворять условие y £ x + 1/6 , а во втором

y ≥ x - 1/6 . Область, удовлетворяющая этим двум условиям заштрихована на рис. 2

Иными словами, в терминах геометрической вероятности, вероятность встречи есть отношение площади заштрихованной «полосы» между прямыми y = x + 1/6 и y = x - 1/6 внутри квадрата к площади самого квадрата.

Искомая вероятность p равна отношению площади заштрихованной области к площади всего квадрата.. Площадь квадрата равна единице, а площадь заштрихованной области можно определить как разность единицы и суммарной площади двух треугольников, изображенных на рисунке 7. Отсюда следует:

Выше отмечено, что классическое определение вероятности применимо только для тех событий, которые могут появиться в результате испытаний, обладающих симметрией возможных исходов, т.е. сводящихся к схеме случаев. Однако существует большой класс событий, вероятности которых не могут быть вычислены с помощью классического определения.

В первую очередь это события, которые не являются равновозможными исходами испытания. Например, если монета сплющена, то, очевидно, события «появление герба» и «появление решки» при подбрасывании монеты нельзя считать равновозможными, и формула (1. 1) для расчета вероятности любого из них окажется неприменима.

Но есть и другой подход при оценке вероятности событий, основанный на том, насколько часто будет появляться данное событие в произведенных испытаниях.

Статистической вероятностью события А называется относительная частота (частость ) появления этого события в п произведенных испытаниях , т.е.

где Р(Л) - статистическая вероятность события A; w(A) - относительная частота (частость) события Ат - число испытаний, в которых появилось событие А;п - общее число испытаний.

В отличие от «математической» вероятности Р(А), рассматриваемой в классическом определении (1. 1), статистическая вероятность Р(Л) является характеристикой опытной , экспериментальной. Если Р(А) есть доля случаев, благоприятствующих событию Л, которая определяется непосредственно, без каких-либо испытаний, то PIA) есть доля тех фактически произведенных испытаний, в которых событие А появилось.

Согласно статистическому определению вероятность события есть предел 1 относительной частоты (частости) события при неограниченном увеличении числа испытаний , т.е.

Это означает, чтопри достаточно большом числе испытаний п можно считать, что

Статистическое определение вероятности, как и понятия и методы теории вероятностей в целом, применимы не к любым событиям с неопределенным исходом, которые в житейской практике считаются случайными, а только к тем из них, которые обладают определенными свойствам и .

1. Рассматриваемые события должны быть исходами только тех испытаний, которые могут быть воспроизведены неограниченное число раз при одном и том же комплексе условий. Так, например, бессмысленно ставить вопрос об определении вероятностей возникновения войн, появления гениальных произведений искусства и т.п., так как речь идет о неповторимых в одинаковых условиях испытаниях, уникальных событиях. Или, например, нс имеет смысла говорить о том, что данный студент сдаст семестровый экзамен по теории вероятностей, поскольку речь здесь идет о единичном испытании, повторить которое в тех же условиях нет возможности.

И хотя приведенные в примерах события с неопределенным исходом относятся к категории «может произойти, а может и не произойти», такими событиями теория вероятностей не занимается.

2. События должны обладать так называемой статистической устойчивостью , или устойчивостью относительных частот . Это означает, что в различных сериях испытаний относительная частота (частость) события изменяется незначительно (тем меньше, чем больше число испытаний), колеблясь около постоянного числа. Оказалось, что этим постоянным числом является вероятность события (об этом идет речь в теореме Бернулли, приведенной в гл. 6).

Факт приближения относительной частоты, или частости, события к его вероятности (1.1) при увеличении числа испытаний, сводящихся к схеме случаев, подтверждается многочисленными массовыми экспериментами, проводимыми разными лицами со времен возникновения теории вероятностей. Так, например, в опытах Бюффоиа (XVIII в.) относительная частота (частость) появления герба при 4040 подбрасываниях монеты оказалась равной 0,5069, в опытах Пирсона (XIX в.) при 23 000 подбрасываниях - 0,5005, практически не отличаясь от вероятности этого события, равной 0,5.

3. Число испытаний , в результате которых появляется событие Л, должно быть достаточно велико , ибо только в этом случае можно считать вероятность события Р(А) приближенно равной ее относительной частоте.

Резюмируя, можно сказать, что теория вероятностей изучает лишь такие события , в отношении которых имеет смысл не только утверждение об их случайности , но и возможна объективная оценка относительной частоты их появления. Так, утверждение, что при выполнении определенного комплекса условий? вероятность события равна р, означает не только случайность события Л, но и определенную , достаточно близкую к р , долю появлений события А при большом числе испытаний ; а значит, выражает определенную объективную (хотя и своеобразную) связь между комплексом условий 5* и событием А (не зависящую от субъективных суждений о наличии этой связи того или иного лица). И даже просто существование вероятности р (когда само значение р неизвестно) сохраняет качественно суть этого утверждения, выделенную курсивом.

Легко проверить, что свойства вероятности (см. (1.2)), вытекающие из классического определения (1. 1), сохраняются и при статистическом определении вероятности (1.3").

Наряду с классическим и статистическим определениями вероятности в приложениях математики иногда рассматривают так называемую субъективную вероятность как степень уверенности в наступлении того или иного события на основе обработки мнений экспертов. При таком подходе можно говорить о субъективной вероятности (а точнее, субъективной возможности) появления уникальных событий - результатов (исходов) неповторимых в одинаковых условиях испытаний. Субъективная вероятность может быть использована, например, при прогнозировании доходности активов, прибыли от инвестиций и т.и.

  • Понятие, т.е. сходимости, в теории вероятностей существенно отличается от классического, рассматриваемого в курсе математического анализа (подробнее об этом см. параграфы 6.3, 6.4).
  • В прикладной литературе выполнение приводимых ниже свойств событий с неопределенным исходом в исследуемой реальной действительности иногда называют условиямидействия статистического ансамбля.

В экономике, так же как и в других областях человеческой деятельности или в природе, постоянно приходится иметь дело с событиями, которые невозможно точно предсказать. Так, объем продаж товара зависит от спроса, который может существенно изменяться, и от ряда других факторов, которые учесть практически нереально. Поэтому при организации производства и осуществлении продаж приходится прогнозировать исход такой деятельности на основе либо собственного предыдущего опыта, либо аналогичного опыта других людей, либо интуиции, которая в значительной степени тоже опирается на опытные данные.

Чтобы каким-то образом оценить рассматриваемое событие, необходимо учитывать или специально организовывать условия, в которых фиксируется это событие.

Осуществление определенных условий или действий для выявления рассматриваемого события носит название опыта или эксперимента .

Событие называется случайным , если в результате опыта оно может произойти или не произойти.

Событие называется достоверным , если оно обязательно появляется в результате данного опыта, и невозможным , если оно не может появиться в этом опыте.

Например, выпадение снега в Москве 30 ноября является случайным событием. Ежедневный восход Солнца можно считать достоверным событием. Выпадение снега на экваторе можно рассматривать как невозможное событие.

Одной из главных задач в теории вероятностей является задача определения количественной меры возможности появления события.

Алгебра событий

События называются несовместными, если они вместе не могут наблюдаться в одном и том же опыте. Так, наличие двух и трех автомашин в одном магазине для продажи в одно и то же время — это два несовместных события.

Суммой событий называется событие, состоящее в появлении хотя бы одного из этих событий

В качестве примера суммы событий можно назвать наличие в магазине хотя бы одного из двух товаров.

Произведением событий называется событие, состоящее в одновременном появлении всех этих событий

Событие, состоящее в появлении одновременно в магазине двух товаров является произведением событий: -появление одного товара, — появление другого товара.

События образуют полную группу событий, если хотя бы одно из них обязательно произойдет в опыте.

Пример. В порту имеется два причала для приема судов. Можно рассмотреть три события: — отсутствие судов у причалов, — присутствие одного судна у одного из причалов, — присутствие двух судов у двух причалов. Эти три события образуют полную группу событий.

Противоположными называются два единственно возможных события, образующих полную группу.

Если одно из событий, являющихся противоположными, обозначить через , то противоположное событие обычно обозначают через .

Классическое и статистическое определения вероятности события

Каждый из равновозможных результатов испытаний (опытов) называется элементарным исходом. Их обычно обозначают буквами . Например, бросается игральная кость. Элементарных исходов всего может быть шесть по числу очков на гранях.

Из элементарных исходов можно составить более сложное событие. Так, событие выпадения четного числа очков определяется тремя исходами: 2, 4, 6.

Количественной мерой возможности появления рассматриваемого события является вероятность.

Наиболее широкое распространение получили два определения вероятности события: классическое и статистическое .

Классическое определение вероятности связано с понятием благоприятствующего исхода.

Исход называется благоприятствующим данному событию, если его появление влечет за собой наступление этого события.

В приведенном примере рассматриваемое событие — четное число очков на выпавшей грани, имеет три благоприятствующих исхода. В данном случае известно и общее
количество возможных исходов. Значит, здесь можно использовать классическое определение вероятности события.

Классическое определение равняется отношению числа благоприятствующих исходов к общему числу возможных исходов

где — вероятность события , — число благоприятствующих событию исходов, — общее число возможных исходов.

В рассмотренном примере

Статистическое определение вероятности связано с понятием относительной частоты появления события в опытах.

Относительная частота появления события вычисляется по формуле

где - число появления события в серии из опытов (испытаний).

Статистическое определение . Вероятностью события называется число, относительно которого стабилизируется (устанавливается) относительная частота при неограниченном увеличении числа опытов.

В практических задачах за вероятность события принимается относительная частота при достаточно большом числе испытаний.

Из данных определений вероятности события видно, что всегда выполняется неравенство

Для определения вероятности события на основе формулы (1.1) часто используются формулы комбинаторики, по которым находится число благоприятствующих исходов и общее число возможных исходов.