Ремонт Стены Уход

Преврати дробное число в смешанное число. Как перевести неправильную дробь в правильную

Огромный блок математики посвящен работе с дробями или нецелыми числами. С ними очень часто встречаются и в жизни, поэтому знать, как работать с такими цифрами важно для любого человека. Математика – это наука, в которой ученик начинает с познания простых вещей и действий, а затем переходит к более сложным.

Знание и умение работать с подобными цифрами облегчит ему в дальнейшем работу с логарифмами, рациональными показателями и интегралами. С такими числами можно делать все то же самое, что и с обыкновенными: складывать дроби, делить, вычитать и умножать. Кроме этого, их можно сокращать. Работать с дробями просто, главное – это знать основные правила и методы их вычисления.

Основные понятия

Для того, чтобы понять, что это за значение такое, необходимо представить некий целый предмет. Допустим, что есть торт, который порезали на несколько одинаковых или равных кусков. Каждый кусочек будет называться долей.

Например, 10 состоит из 5 двоек, каждая двойка – это часть от десяти.

Доли имеют свои названия, в зависимости от их общего количества в целом числе: 10 может состоять из двух пятёрок или пяти двоек, в первом случае она будет называться (одна вторая), а во втором — (одна пятая). Следует помнить, что равняется половине числа, (одна третья) — трети, а (одна четвертая) – четвертью. Их могут также изображать через черточку: ½, 1/3 или 1/5.


Цифру, написанную сверху горизонтальной линии или слева от наклонной, называют числителем – он показывает сколько долей взяли у целого числа, а цифра под линии или справа от нее – знаменатель, он показывает на сколько всего долей разделили. Например, торт разделили на 10 кусков и сразу отложили два из них для опоздавших гостей. Это будет 2/10 (две десятых), т.е. взяли 2 (числитель) куска от общих 10 (знаменатель).

Какие бывают доли, что такое неправильная дробь, что такое обыкновенная дробь? На эти вопросы легко ответить:


Смешанная цифра всегда может трансформироваться в неправильную дробь и наоборот.

Главное свойство гласит: при умножении, а также деления делимого и делителя на одинаковый множитель, в целом величина дроби не изменится. Это свойство делает возможным все операции с дробями.

Как сократить?

Главное правило гласит, что долевую цифру можно сократить — поделить ее числитель и знаменатель на одинаковый делитель (отличный от 0) так, чтобы получилась новая цифра с меньшими параметрами, но равная исходной по величине. Исходя из этого правила можно понять, что дроби бывают сократимые и несократимые .

Пример сокращения дробей: 8/24 сократим, поделив ее параметры на 2. Получим: 8:2=4 и 24:2=12. В результате, исходная цифра превратится в 4/12 . Можно повторить операцию, вновь поделив числа: 4:2=2 и 12:2=6. Получим 2/6. Еще раз повторим операцию: 2:2=1 и 6:2=3. В итоге получится несократимая цифра 1/3, поскольку ее параметры уже нельзя разделить на одинаковый делитель. Любое сократимое число можно привести к несократимому.

Сокращать можно при умножении дробных выражений друг на друга:


*. Сами по себе эти числа несократимые, но выполняя операцию умножения, можно сократить их по диагонали: * = =. Сокращать при умножении можно только крест-накрест: числитель первой со знаменателем второй, и наоборот.

Сокращать можно и смешанную цифру, т.е. целую часть и правильную дробь представить в виде неправильной. Для этого следует выполнить некоторые действия:


Справедливо и обратное действие: из неправильной дроби сделать смешанную. Для этого рассмотрим обратное действие с :


Таким способом сокращать дроби при любых операциях возможно. Можно сокращать значения ее делимого и делителя при умножении их на одинаковый множитель, и превращая из смешанного числа в долю, и наоборот.

Возможные действия

Все основные виды вычислений доступны при счете долей, как и с целыми цифрами: сложение, вычитание и прочие. Рассмотрим каждое действие по отдельности с примерами:

Сложение и вычитание

Складывать доли можно двумя путями, в зависимости от их делителя. Они бывают одинаковыми и разными. Рассмотрим пример складывания долей с одинаковыми делителями.

Для решения + необходимо по отдельности сложить делимое долей, а делитель не трогать: 1+1. Результатом станет цифра , но поскольку она неправильная, то ее можно преобразовать в смешанную, разделив делимое на делитель: 2:2= 1. Неправильную долю всегда (!) следует приводить к правильной и несокращаемой, т. е. если ее делимое и делитель можно поделить на одинаковый множитель – это следует сделать в обязательно порядке.


В случае сложения долей с различными делителями, их необходимо изначально привести к одинаковому . Например, для решения: необходимо:

Вычитание осуществляется точно так же: в случае с одинаковыми делителями их не трогаем, а числители последовательно вычитаем: — = =


. Если же знаменатели различные, то следует поступить, как и при сложении: найти НОК, множители, умножить доли, а затем вычесть уже доли с одинаковыми делителями.

Какие виды дробей существуют?

Для начала о том, что это такое. Дробь — число, которое имеет некоторую часть от единицы. Ее можно записать в двух видах. Первый носит название обыкновенной. То есть такая, у которой есть горизонтальная или наклонная черта. Она приравнивается к знаку деления.

В такой записи число, стоящее над черточкой, называется числителем, а под ней — знаменателем.

Среди обыкновенных выделяют правильные и неправильные дроби. У первых числитель по модулю всегда меньше знаменателя. Неправильные потому так и называются, что у них все наоборот. Значение правильной дроби всегда меньше единицы. В то время как неправильная всегда больше этого числа.

Есть еще смешанные числа, то есть такие у которых имеются целая и дробная части.

Второй вид записи — десятичная дробь. О ней отдельный разговор.

Чем отличаются неправильные дроби от смешанных чисел?

По своей сути, ничем. Это просто разная запись одного и того же числа. Неправильные дроби после несложных действий легко становятся смешанными числами. И наоборот.

Все зависит от конкретной ситуации. Иногда в заданиях удобнее использовать неправильную дробь. А порой необходимо перевести ее в смешанное число и тогда пример решится очень легко. Поэтому, что использовать: неправильные дроби, смешанные числа, — зависит от наблюдательности решающего задачу.

Смешанное число еще сравнивают с суммой целой части и дробной. Причем вторая всегда меньше единицы.

Как представить смешанное число в виде неправильной дроби?

Если требуется выполнить какое-либо действие с несколькими числами, которые записаны в разных видах, то нужно сделать их одинаковыми. Один из методов — представить числа в виде неправильных дробей.

Для этой цели потребуется выполнить действия по такому алгоритму:

  • умножить знаменатель на целую часть;
  • прибавить к результату значение числителя;
  • записать ответ над чертой;
  • знаменатель оставить тем же.

Вот примеры того, как записать неправильные дроби из смешанных чисел:

  • 17 ¼ = (17 х 4 + 1) : 4 = 69/4;
  • 39 ½ = (39 х 2 + 1) : 2 = 79/2.

Как записать неправильную дробь в виде смешанного числа?

Следующий прием противоположен рассмотренному выше. То есть когда все смешанные числа заменяются на неправильные дроби. Алгоритм действий будет таким:

  • разделить числитель на знаменатель до получения остатка;
  • записать частное на месте целой части смешанного;
  • остаток следует разместить над чертой;
  • делитель будет знаменателем.

Примеры такого преобразования:

76/14; 76:14 = 5 с остатком 6; ответом будет 5 целых и 6/14; дробную часть в этом примере нужно сократить на 2, получится 3/7; итоговый ответ — 5 целых 3/7.

108/54; после деления получается частное 2 без остатка; это значит, что не все неправильные дроби удается представить в виде смешанного числа; ответом будет целое — 2.

Как целое число превратить в неправильную дробь?

Бывают ситуации, когда необходимо и такое действие. Чтобы получить неправильные дроби с заранее известным знаменателем, потребуется выполнить такой алгоритм:

  • умножить целое число на нужный знаменатель;
  • записать это значение над чертой;
  • разместить под ней знаменатель.

Самый простой вариант, когда знаменатель равен единице. Тогда ничего умножать не нужно. Достаточно просто написать целое число, которое дано в примере, а под чертой расположить единицу.

Пример : 5 сделать неправильной дробью со знаменателем 3. После умножения 5 на 3 получается 15. Это число будет знаменателем. Ответ задания дробь: 15/3.

Два подхода к решению заданий с разными числами

В примере требуется вычислить сумму и разность, а также произведение и частное двух чисел: 2 целых 3/5 и 14/11.

В первом подходе смешанное число будет представлено в виде неправильной дроби.

После выполнения действий, описанных выше, получится такое значение: 13/5.

Для того чтобы узнать сумму, нужно привести дроби к одинаковому знаменателю. 13/5 после умножения на 11 станет 143/55. А 14/11 после умножения на 5 примет вид: 70/55. Для вычисления суммы нужно только сложить числители: 143 и 70, а потом записать ответ с одним знаменателем. 213/55 — эта неправильная дробь ответ задачи.

При нахождении разности эти же числа вычитаются: 143 — 70 = 73. Ответом будет дробь: 73/55.

При умножении 13/5 и 14/11 не нужно приводить к общему знаменателю. Достаточно перемножить попарно числители и знаменатели. Получится ответ: 182/55.

Так же и при делении. Для правильного решения нужно заменить деление на умножение и перевернуть делитель: 13/5: 14/11 = 13/5 х 11/14 = 143/70.

Во втором подходе неправильная дробь обращается в смешанное число.

После выполнения действий алгоритма 14/11 обратится в смешанное число с целой частью 1 и дробной 3/11.

Во время вычисления суммы нужно сложить целые и дробные части по отдельности. 2 + 1 = 3, 3/5 + 3/11 = 33/55 + 15/55 = 48/55. Итоговый ответ получается 3 целых 48/55. В первом подходе была дробь 213/55. Проверить правильность можно, переведя его в смешанное число. После деления 213 на 55 получается частное 3 и остаток 48. Нетрудно заметить, что ответ правильный.

При вычитании знак «+» заменяется на «-». 2 — 1 = 1, 33/55 — 15/55 = 18/55. Для проверки ответ из предыдущего подхода нужно перевести в смешанное число: 73 делится на 55 и получается частное 1 и остаток 18.

Для нахождения произведения и частного пользоваться смешанными числами неудобно. Здесь всегда рекомендуется переходить к неправильным дробям.

Как сделать из неправильной дроби правильную?

    Само слово — дробь означает, что число дробное, оно меньше целого (как минимум единицы).

    Следовательно, необходимо выделить целое число из числителя. Например, число 30/4 — дробь неправильная, поскольку 30 больше, чем 4. Значит, нужно просто разделить 30 на 4 и получим число до запятой — 7, его то и ставим перед дробью. Умножим 7 на 4 и вычтем это число из 30 — получится 2 — оно будет в числителе дроби. Итог — 7 2/4, сокращаем — 7 1/2. В вашем примере, ответ — 2 3/4.

    Для того необходимо чтслитель: на знаменатель.

    То целое, что получилось — пишите в числитель. Знаменатель тот, что был. Когда поделите — записывайте в целую часть.

    11:4=2 (3 остаток).

    Получаем правил-ую дробь: 2 — целых 34

    Чтобы сделать из неправильной дроби правильную, нужно выявить целые части и отнять их из неправильной дроби. В нашем случае неправильная дробь 11/4. Целых частей будет две (2). Вычитаем их и получаем правильную дробь: две целых три четвртых (2 целых 3/4).

    Неправильную дробь, в нашем случае 11/4 нужно перевести в правильную, т.е. в этом случае смешанную дробь. Если по-простому, то дробь неправильная, потому что в ней помимо дроби есть и целое число. Это как стоит в холодильнике тортик непочатый, хоть и порезанный, а на столе — осталось несколько кусочков от второго. Когда говорим об 11/4, то мы уже не знаем о двух целых тортах, видим лишь одиннадцать крупных кусков. 11 разделили на 4, получили 2, а остаток 11-8=3. Итак, 2 целых 3/4, теперь дробь правильная, в ней числитель поменьше знаменателя будет, но смешанная, так как без целых единиц расчет не обошелся.

    Чтобы из неправильной дроби сделать правильную, надо числитель разделить на знаменатель. Полученное целое число выносим перед дробью, а остаток вписываем в числитель. Знаменатель не изменяется.

    Например: дробь 11/4 — неправильная, где числитель равен 11, а знаменатель — 4.

    Сначала 11 делим на 4, получим 2 целых и 3 остаток. Выносим 2 перед дробью, а остаток 3 пишем в числитель 3/4. Таким образом дробь становится правильной — 2 целых и 3/4.

    У неправильной дроби знаменатель оказывается меньше числителя, что говорит о том, что в этой дроби имеются целые части, которые можно выделить и получить правильную дробь с целым числом.

    Самый простой способ поделить числитель на знаменатель. Полученное целое число ставим слева от дроби, а остаток пишем в числитель, знаменатель остается тем же самым.

    Например 11/4. Делим 11 на 4 и получаем 2 и остаток 3. Двойка -это число, которое ставим рядом с дробью, а тройку пишем в числитель дроби. Выходит 2 и 3/4.

    Чтобы ответить на этот несложный вопрос, можно решить такую же несложную задачку:

    Петя и Валя пришли в компанию сверстников. Всех вместе их стало 11. У Вали были с собой яблоки (но не много) и чтобы угостить всех Петя разрезал каждое на четыре части и раздал. Хватило всем и даже пять кусочков осталось.

    Сколько яблок раздал Петя и сколько яблок осталось? Сколько их было всего?

    А можно записать это математически

    11 кусочков яблока это в нашем случае 11/4 — получили неправильную дробь, так как числитель больше знаменателя.

    Чтобы выделить целую часть (преобразовать неправильную дробь в правильную), нужно числитель разделить на знаменатель , неполное частное (в нашем случае это 2) записать слева, остаток (3)оставить в числителе а знаменатель не трогать.

    В результате получим 11/4 = 11:4 = 2 3/4 яблока раздал Петя.

    Аналогично 5/4 = 1 1/4 яблок осталось.

    (11+5)/4 = 16/4 = 4 яблока принесла Валя

Нехитрые математические правила и приемы, если они не используются постоянно, забываются быстрее всего. Еще быстрее уходят из памяти термины.

Одно из таких простых действий – преобразование неправильной дроби в правильную или, по-другому – смешанную.

Неправильная дробь

Неправильной называется дробь, у которой числитель (число над дробной чертой) больше или равно знаменателю (число под чертой). Такая дробь получается при сложении дробей или умножении дроби на целое число. По правилам математики такую дробь обязательно нужно превратить в правильную.

Правильная дробь

Логично предположить, что правильными называются все остальные дроби. Строгое определение – правильной называется дробь, у которой числитель меньше знаменателя. Дробь, у которой есть целая часть иногда называется смешанной.


Преобразование неправильной дроби в правильную

  • Первый случай: числитель и знаменатель равны друг другу. В результате преобразования любой такой дроби получится единица. Неважно, три третьих это или сто двадцать пять сто двадцать пятых. По сути, такая дробь обозначает действие деления числа на само себя.


  • Второй случай: числитель больше знаменателя. Здесь нужно вспомнить метод деления чисел с остатком.
    Для этого нужно найти самое близкое к значению числителя число, которое делится на знаменатель без остатка. Например, у вас есть дробь девятнадцать третьих. Наиболее близкое число, которое можно разделить на три – это восемнадцать. Получится шесть. Теперь отнимите от числителя полученное число. Получим единицу. Это и есть остаток. Запишите результат преобразования: шесть целых и одна треть.


Но прежде чем приводить дробь к правильному виду, нужно проверить, можно ли её сократить.
Сокращение дроби возможно, если у числителя и знаменателя есть общий делитель. То есть такое число, на которое и то, и другое делится без остатка. Если таких делителей несколько, нужно найти наибольший.
Например, у всех четных чисел такой общий делитель – двойка. А у дроби шестнадцатых двенадцатых, есть еще один общий делитель – четверка. Это наибольший делитель. Разделите числитель и знаменатель на четыре. Результат сокращения: четыре третьих. А теперь, в качестве тренировки, преобразуйте эту дробь в правильную.

Дробь представляет собой число, которое состоит из одной или нескольких долей единицы. В математике существует три вида дробей: обыкновенные, смешанные и десятичные.


  • Обыкновенные дроби

Обыкновенная дробь записывается как соотношение, в котором в числителе отражается, сколько взято частей от числа, а знаменатель показывает, на сколько частей разделена единица. Если числитель меньше знаменателя, то перед нами правильная дробь.Например: ½, 3/5, 8/9.


Если числитель равен знаменателю или больше его, то мы имеем дело с неправильной дробью. Например: 5/5, 9/4, 5/2 При делении числителя может получиться конечное число. Например, 40/8 = 5. Следовательно, любое целое число может быть записано в виде обыкновенной неправильной дроби или ряда таких дробей. Рассмотрим записи одного и того же числа в виде ряда различных .

  • Смешанные дроби

В общем виде смешанная дробь может быть представлена формулой:


Таким образом, смешанная дробь записывается как целое число и обыкновенная правильная дробь, а под такой записью понимают сумму целого и его дробной части.

  • Десятичные дроби

Десятичная дробь – это особая разновидность дроби, у которой знаменатель может быть представлен как степень числа 10. Существуют бесконечные и конечные десятичные дроби. При записи этой разновидности дроби сначала указывается целая часть, затем через разделитель (точку или запятую) фиксируется дробная часть.


Запись дробной части всегда определяется ее размерностью. Десятичная запись выглядит следующим образом:

Правила перевода между различными видами дробей

  • Перевод смешанной дроби в обыкновенную

Смешанную дробь можно перевести только в неправильную. Для перевода необходимо целую часть привести и тому же знаменателю, что и дробную. В общем виде это будет выглядеть следующим образом:
Рассмотрим использование этого правила на конкретных примерах:


  • Перевод обыкновенной дроби в смешанную

Неправильную обыкновенную дробь можно превратить в смешанную путем простого деления, в результате которого находится целая часть и остаток (дробная часть).


Для примера переведем дробь 439/31 в смешанную:
​​

  • Перевод обыкновенной дроби

В некоторых случаях перевести дробь в десятичную достаточно просто. В этом случае применяется основное свойство дроби, числитель и знаменатель умножаются на одно и то же числу, для того, чтобы привести делитель к степени числа 10.


Например:



В некоторых случаях может понадобиться найти частное путем деления уголком или с помощью калькулятора. А некоторые дроби невозможно привести к конечной десятичной дроби. Например, дробь 1/3 при делении никогда не даст конечный результат.

Каждый человек при решении задач с математики нередко сталкивался с задачами на дроби. Их очень много, поэтому мы рассмотрим разные варианты решения основных таких задач.

Что такое дроби

Верхнее число любой дроби называется числителем, а нижнее число - знаменателем. Обыкновенная дробь - это частное двух чисел, одно из этих чисел - в числителе дроби, второе - в знаменателе дроби. Виды этих обыкновенных дробей будут определяться сравнением знаменателя и числителя дроби.

Ежели знаменатель дроби (натуральное число) больше числителя дроби (натуральное число), то дробь называется правильной. Приведем примеры: 7/19; 9/13; 31/152; 5/17.

Если знаменатель дроби (натуральное число) меньше или равен числителю дроби (натуральное число), то дробь называется неправильной. Приведем примеры: 7/5; 19/3; 15/9; 231/63.

Как перевести неправильную дробь

Чтобы смешанную дробь перевести в неправильную, необходимо целую часть дроби умножить на знаменатель в дробной части и добавить числитель к этому произведению. Потом сумму взять как числитель, написав тот же, что и прежде знаменатель. Приведем примеры:

  • 4(3/11) = (4x11+3)/11 = (44+3)/11 = 47/11.
  • 11(5/9) = (11x9+5)/9 = (99+5)/9 = 104/9.

Для перевода неправильной дроби в правильную, необходимо числитель этой неправильной дроби разделить на ее знаменатель. Полученное, при этом, целое число взять целой частью дроби, ну а остаток (конечно, если он есть) взять как числитель дробной части правильной дроби, написав тот же, что и прежде знаменатель. Приведем примеры:

  • 150/13 = (143/13)+(7/13) = 11(7/13).
  • 156/12 = (13x12)/12 = 13.

Для перевода неправильной дроби в десятичную необходимо выяснить, существует ли такой множитель, что позволит привести знаменатель дробной части неправильной дроби к числу, которое равно десятке (или десятке, которая возведена в любую степень (10, 100, 1000 и дальше). Если такой множитель есть, то необходимо умножить числитель и знаменатель неправильной дроби на этот множитель, чтобы проверить его. Теперь умноженный числитель необходимо приписать через запятую к целой части неправильной дроби. Приведем примеры:

  • Множитель «5» - 8/20 = (8x5)/(20x5) = 40/100 = 0,4.
  • Множитель «4» - 14/25 = (14x4)/(25x4) = 56/100 = 0,56.
  • Множитель «25» - 3/40 = (3x25)/(40x25) = 75/1000 = 0,075.

Если такого множителя не существует, это означает, что эта неправильная дробь в десятичной форме не имеет четкого эквивалента. То есть, не каждую неправильную дробь можно перевести в десятичную. В этом случае, Вам необходимо найти приблизительное значение дроби с необходимой для Вас степенью точности. Посчитать такую дробь можно на калькуляторе, в уме или в столбик. Приведем примеры: 41/7 = 5(6/7) = 5,9 (с округлением до десятых), = 5,86 (с округлением до сотых), = 5,857 (с округлением до тысячных); 3/7, 7/6, 1/3 и другие. Также четко не переводятся и считаются на калькуляторе, в уме или в столбик.

Теперь Вы знаете, как перевести неправильную дробь в правильную или десятичную дробь!


В этой статье мы поговорим про смешанные числа . Сначала дадим определение смешанных чисел и приведем примеры. Дальше остановимся на связи между смешанными числами и неправильными дробями. После этого покажем, как перевести смешанное число в неправильную дробь. Наконец, изучим обратный процесс, который называется выделением целой части из неправильной дроби.

Навигация по странице.

Смешанные числа, определение, примеры

Математики договорились, что сумму n+a/b , где n - натуральное число , a/b – правильная обыкновенная дробь , можно записывать без знака сложения в виде . Например, сумму 28+5/7 можно кратко записать как . Такую запись назвали смешанной, а число, которое соответствует данной смешанной записи, назвали смешанным числом.

Так мы подошли к определению смешанного числа.

Определение.

Смешанное число – это число, равное сумме натурального числа n и правильной обыкновенной дроби a/b , и записанное в виде . При этом число n называют целой частью числа , а число a/b называют дробной частью числа .

По определению смешанное число равно сумме свой целой и дробной части, то есть, справедливо равенство , которое можно записать и так: .

Приведем примеры смешанных чисел . Число - это смешанное число, натуральное число 5 – целая часть числа , а - дробная часть числа . Другими примерами смешанных чисел являются .

Иногда можно встретить числа в смешанной записи, но имеющие дробной частью неправильную дробь, например, или . Эти числа понимают как сумму их целой и дробной части, например, и . Но такие числа не подходят под определение смешанного числа, так как дробной частью смешанных чисел должна быть правильная дробь.

Число - это тоже не смешанное число, так как 0 не натуральное число.

Связь между смешанными числами и неправильными дробями

Проследить связь между смешанными числами и неправильными дробями лучше всего на примерах.

Пусть на подносе лежит торт и еще 3/4 такого же торта. То есть, по смыслу сложения на подносе находится 1+3/4 торта. Записав последнюю сумму в виде смешанного числа, констатируем, что на подносе находится торта. Теперь целый торт разрежем на 4 равные доли. В результате на подносе окажется 7/4 торта. Понятно, что «количество» торта при этом не изменилось, поэтому .

Из рассмотренного примера явно видна такая связь: любое смешанное число можно представить в виде неправильной дроби .

А теперь пусть на подносе находятся 7/4 торта. Сложив из четырех долей целый торт, на подносе окажется 1+3/4 , то есть, торта. Отсюда видно, что .

Из этого примера понятно, что неправильную дробь можно представить в виде смешанного числа . (В частном случае, когда числитель неправильной дроби делится нацело на знаменатель, неправильную дробь можно представить в виде натурального числа, например, , так как 8:4=2 ).

Перевод смешанного числа в неправильную дробь

Для выполнения различных действий со смешанными числами оказывается полезным навык представления смешанных чисел в виде неправильных дробей. В предыдущем пункте мы выяснили, что любое смешанное число можно перевести в неправильную дробь. Пришло время разобраться, как осуществляется такой перевод.

Запишем алгоритм, показывающий как перевести смешанное число в неправильную дробь :

Рассмотрим пример перевода смешанного числа в неправильную дробь.

Пример.

Представьте смешанное число в виде неправильной дроби.

Решение.

Выполним все необходимые шаги алгоритма.

Смешанное число равно сумме его целой и дробной части: .

Записав число 5 как 5/1 , последняя сумма примет вид .

Чтобы закончить перевод исходного смешанного числа в неправильную дробь, осталось выполнить сложение дробей с разными знаменателями : .

Краткая запись всего решения такова: .

Ответ:

Итак, чтобы осуществить перевод смешанного числа в неправильную дробь, нужно выполнить следующую цепочку действий: . В итоге получена , которую мы и будем использовать в дальнейшем.

Пример.

Запишите смешанное число в виде неправильной дроби.

Решение.

Воспользуемся формулой для перевода смешанного числа в неправильную дробь. В этом примере n=15 , a=2 , b=5 . Таким образом, .

Ответ:

Выделение целой части из неправильной дроби

В ответе не принято записывать неправильную дробь. Неправильную дробь предварительно заменяют либо равным ей натуральным числом (когда числитель делится нацело на знаменатель), либо проводят так называемое выделение целой части из неправильной дроби (когда числитель не делится нацело на знаменатель).

Определение.

Выделение целой части из неправильной дроби – это замена дроби равным ей смешанным числом.

Осталось узнать, как можно выделить целую часть из неправильной дроби.

Это очень просто: неправильная дробь a/b равна смешанному числу вида , где q - неполное частное, а r – остаток от деления a на b . То есть, целая часть равна неполному частному от деления a на b , а остаток равен числителю дробной части.

Докажем это утверждение.

Для этого достаточно показать, что . Переведем смешанное в неправильную дробь так, как мы это делали в предыдущем пункте: . Так как q – неполное частное, а r – остаток от деления a на b , то справедливо равенство a=b·q+r (при необходимости смотрите