Ремонт Стены Уход

Максимальное количество транзисторов в процессоре. Центральный процессор

Часть 1

29 августа корпорация Intel представила три новых процессора для настольных систем на базе чипсета Intel X99, которые составили семейство Haswell-E. Это семейство процессоров ориентировано на самые высокопроизводительные системы. На сегодняшний день семейство процессоров Haswell-E составляют три модели: Intel Core i7-5960X, Core i7-5930K и Core i7-5820K.

В этой статье мы подробно рассмотрим восьмиядерный процессор Intel Core i7-5960X и сравним его с процессорами Ivy Bridge-E и Sandy Bridge-E.

Коротко о новом семействе Haswell-E

Новое семейство процессоров с кодовым наименованием Haswell-E является преемником семейств Sandy Bridge-E и Ivy Bridge-E. Однако если процессоры Sandy Bridge-E и Ivy Bridge-E были совместимы друг с другом в плане разъема и платформы, то процессоры Haswell-E требуют уже абсолютно новой платформы.

Если говорить точнее, то 32-нанометровые процессоры Sandy Bridge-E, анонсированные компанией в ноябре 2011 года и пришедшие на смену шестиядерным процессорам Gulftown, были совместимы только с чипсетом Intel X79 и имели разъем LGA2011. Далее, в сентябре 2013 года, компания Intel анонсировала семейство 22-нанометровых процессоров Ivy Bridge-E, которые имели точно такой же разъем LGA2011 и были совместимы только с платами на базе того же чипсета Intel X79. Новые же 22-нанометровые процессоры семейства Haswell-E уже имеют новый разъем, получивший название LGA2011-3 и совместимы только с платами на базе нового чипсета Intel X99.

В качестве исторической справки напомним, что семейство Sandy Bridge-E первоначально составляли три модели: шестиядерные процессоры Core i7-3960X и Core i7-3930K, а также четырехъядерный Core i7-3820. Core i7-3960X и Core i7-3930K имели полностью разблокированный коэффициент умножения, а Core i7-3820 - частично разблокированный. Немного позднее появился и еще один представитель данного семейства - шестиядерный процессор Core i7-3970X, который отличался от Core i7-3960X лишь более высокой тактовой частотой (и более высоким энергопотреблением). Все процессоры семейства Sandy Bridge-E были основаны на микроархитектуре Sandy Bridge и не имели интегрированного графического ядра. Кроме того, все процессоры были оснащены четырехканальным контроллером памяти и поддерживали память DDR3-1600. Топовые процессоры семейства Sandy Bridge-E - модели Core i7-3970X и Core i7-3960X - относились к серии Extreme Edition. Эти процессоры имели разделяемый между всеми ядрами кэш L3 размером 15 МБ. Процессор Core i7-3930K был наделен кэшем L3 размером 12 МБ, а процессор Core i7-3820 - размером 10 МБ. Все процессоры семейства Sandy Bridge-E имели интегрированный контроллер PCI Express 3.0 на 40 линий, которые могли быть сгруппированы в два порта PCI Express 3.0 x16 и один порт PCI Express 3.0 x8, в один порт PCI Express 3.0 x16 и три порта PCI Express 3.0 x8 или в один порт PCI Express 3.0 x16, два порта PCI Express 3.0 x8 и два порта PCI Express 3.0 x4.

Технические характеристики процессоров семейства Sandy Bridge-E приводятся далее.

Характеристики
Техпроцесс 32 нм 32 нм 32 нм 32 нм
Разъем LGA2011 LGA2011 LGA2011 LGA2011
Совместимость с чипсетом Intel X79 Intel X79 Intel X79 Intel X79
Кол-во ядер/потоков 6/12 6/12 6/12 4/8
32+32 32+32 32+32 32+32
256 256 256 256
Размер L3-кэша, МБ 15 15 12 10
3,5 3,3 3,2 3,6
4,4 3,9 3,8 3,9
Кол-во каналов памяти 4 4 4 4
Поддерживаемая память DDR3-1600 DDR3-1600 DDR3-1600 DDR3-1600
40 40 40 40
TDP, Вт 150 130 130 130

Семейство 22-нанометровых процессоров Ivy Bridge-E включает лишь три модели: Core i7-4960X, Core i7-4930K и Core i7-4820K. Первые две модели - это шестиядерные процессоры, а последняя - четырехъядерный. Все процессоры семейства Ivy Bridge-E полностью разблокированные. Естественно, ядра этих процессоров основаны на микроархитектуре Ivy Bridge, графического ядра в них нет. Все процессоры Ivy Bridge-E оснащены четырехканальным контроллером памяти и поддерживают память DDR3-1866. Топовая модель Core i7-4960X относится к серии Extreme Edition, этот процессор наделен кэшем L3 размером 15 МБ. Процессор Core i7-4930K имеет кэш L3 размером 12 МБ, а Core i7-4820K - размером 10 МБ. Все процессоры семейства Ivy Bridge-E имеют интегрированный контроллер PCI Express 3.0 на 40 линий, которые могут группироваться точно так же, как в процессорах Sandy Bridge-E.

Технические характеристики процессоров семейства Ivy Bridge-E приводятся далее.

Характеристики
Техпроцесс 22 нм 22 нм 22 нм
Разъем LGA2011 LGA2011 LGA2011
Совместимость с чипсетом Intel X79 Intel X79 Intel X79
Кол-во ядер/потоков 6/12 6/12 4/8
Размер L1-кэша (кэш данных + кэш инструкций), КБ 32+32 32+32 32+32
Размер L2-кэша на каждое ядро процессора, КБ 256 256 256
Размер L3-кэша, МБ 15 12 10
Штатная тактовая частота, ГГц 3,6 3,4 3,7
Максимальная частота в режиме Turbo Boost, ГГц 4,0 3,9 3,9
Кол-во каналов памяти 4 4 4
Поддерживаемая память DDR3-1866 DDR3-1866 DDR3-1866
Количество линий PCI Express 3.0 40 40 40
TDP, Вт 130 130 130

Собственно, если сопоставить характеристики процессоров Ivy Bridge-E и Sandy Bridge-E, то видно, что между ними много общего. Модели Core i7-3970X/3960X заменяет Core i7-4960X, модель Core i7-3930K замещает процессор Core i7-4930K, ну а на смену младшей модели Core i7-3820 пришла модель Core i7-4820K. И еще раз подчеркнем, что процессоры Sandy Bridge-E и Ivy Bridge-E совместимы друг с другом по платформе.

А вот с новыми процессорами Haswell-E ситуация обстоит несколько иначе. Как уже отмечалось, это абсолютно новая платформа на базе чипсета Intel X99, это новый сокет LGA2011-v3 и это новая память DDR4. Кстати, несмотря на тот факт, что сокет называется LGA2011-v3, количество контактов в нем больше, чем в сокете LGA2011. А вот система для крепления кулера осталась прежней, то есть кулер для сокета LGA2011 подойдет и для сокета LGA2011-v3.


Итак, на сегодняшний день семейство 22-нанометровых процессоров Haswell-E включает три модели: Core i7-5960X, Core i7-5930K и Core i7-5820K. Все процессоры этого семейства полностью разблокированные. Естественно, ядра этих процессоров основаны на микроархитектуре Haswell, графического ядра в них по-прежнему нет. Топовая модель Core i7-5960X относится к серии Extreme Edition, этот восьмиядерный процессор имеет кэш L3 размером 20 МБ. Процессоры Core i7-5930K и Core i7-5820K шестиядерные и имеют кэш L3 размером 15 МБ. Все процессоры семейства Haswell-E имеют четырехканальный контроллер памяти DDR4 и поддерживают память DDR4-2133 (в штатном режиме работы). Кроме того, процессоры семейства Haswell-E имеют интегрированный контроллер PCI Express 3.0, причем старшие модели Core i7-5960X и Core i7-5930K имеют контроллер PCI Express 3.0 на 40 линий, а вот в младшей модели Core i7-5820K имеется лишь 28 линий PCI Express 3.0

Технические характеристики процессоров семейства Haswell-E приводятся далее.

Характеристики
Техпроцесс 22 нм 22 нм 22 нм
Разъем LGA2011-v3 LGA2011-v3 LGA2011-v3
Совместимость с чипсетом Intel X99 Intel X99 Intel X99
Кол-во ядер/потоков 8/16 6/12 6/12
Размер L1-кэша (кэш данных + кэш инструкций), КБ 32+32 32+32 32+32
Размер L2-кэша на каждое ядро процессора, КБ 256 256 256
Размер L3-кэша, МБ 20 15 15
Штатная тактовая частота, ГГц 3,0 3,5 3,3
Максимальная частота в режиме Turbo Boost, ГГц 3,5 3,7 3,6
Кол-во каналов памяти 4 4 4
Поддерживаемая память DDR4-2133 DDR4-2133 DDR4-2133
Количество линий PCI Express 3.0 40 40 28
TDP, Вт 140 140 140
Рекомендуемая стоимость $999 $583 $389

Восьмиядерный процессор Core i7-5960X имеет кристалл с площадью 356 мм² и числом транзисторов 2,6 млрд. Если сравнивать эти показатели с аналогичными показателями для обычных процессоров Haswell, то они впечатляют. Действительно, у четырехъядерных процессоров Haswell площадь кристалла составляет всего 177 мм², а количество транзисторов - 1,4 млрд.

Еще одна особенность процессоров семейства Haswell-E заключается в том, что теплорассеивающая крышка процессора для улучшения теплоотвода припаивается к кристаллу. Напомним, что в процессорах Sandy Bridge-E в качестве термоинтерфейса между кристаллом и крышкой использовался припой, а вот в процессорах семейства Ivy Bridge-E стали использовать термопасту, которая по своим теплопроводящим свойствам была хуже припоя. Это вызвало немало критики со стороны оверклокеров, поскольку процессоры перегревались при разгоне. В процессорах Haswell-E компания Intel опять перешла на использование припоя, что, по идее, должно улучшить разгонный потенциал этих процессоров. Однако не стоит забывать, что TDP этих процессоров составляет 140 Вт, и их разгон требует весьма мощной системы охлаждения.

Если говорить о тактовых частотах процессоров Haswell-E, то они даже ниже, чем у процессоров Ivy Bridge-E. К примеру, у топового восьмиядерного Core i7-5960X (Haswell-E) номинальная частота составляет 3,0 ГГц, а максимальная - 3,5 ГГц, в то время как у шестиядерного Core i7-4960X (Ivy Bridge-E) номинальная частота составляла 3,6 ГГц, а максимальная - 4,0 ГГц. Таким образом, ставка в новых процессорах делается не на тактовую частоту, а на количество ядер. Правда, далеко не все пользовательские приложения оптимизированы под такое количество ядер, и вполне вероятно, что в некоторых приложениях новый восьмиядерный процессор Core i7-5960X не превзойдет шестиядерный Core i7-4960X или даже четырехъядерный Core i7-4790K. Впрочем, посмотрим.

Работа под нагрузкой и разгонный потенциал

Для тестирования восьмиядерного процессора Core i7-5960X мы использовали стенд следующей конфигурации:

  • материнская плата: Asus X99-Deluxe ,
  • оперативная память: четыре модуля по 4 ГБ AData DDR4-2133,
  • режим работы памяти: DDR4-2133 (четырехканальный),




Итак, рассмотрим результаты тестирования процессора Core i7-5960X в разных режимах загрузки. Для стрессовой загрузки процессора мы использовали утилиту AIDA64.

В штатном режиме работы (без разгона и при частоте BCLK 100 МГц) минимальная частота процессора составляет 1,2 ГГц (коэффициент умножения 12). В состоянии простоя напряжение питания ядра процессора - всего 0,688 В, а энергопотребление составляет 15 Вт (по данным утилиты AIDA64).


Заметим, что максимальная частота процессора (в режиме Turbo Boost) определяется утилитой CPU-Z 1.70 как 3,3 ГГц, а не 3,5 ГГц, как указано в документации. Дело тут в том, что максимальная частота ядер зависит от количества активных ядер: если загружено одно или два ядра процессора, то их частота может составлять 3,5 ГГц, а при загрузке большего числа ядер процессора их максимальная частота составляет 3,3 ГГц.

При загрузке тестом Stress CPU из пакета AIDA64 частота ядер процессора Core i7-5960X составляет 3,3 ГГц, а потребляемая мощность - 75 Вт. Отметим, что напряжение питания ядер процессора в данном режиме составляет 1,022 В. Температура ядер процессора в этом режиме поднимается примерно до 60 °C при использовании штатной системы охлаждения.



При загрузке тестом Stress FPU, который значительно сильнее нагревает процессор, частота ядер Core i7-5960X составляет 3,2 ГГц, а их температура поднимается до 90 °C. Потребляемая мощность процессора при этом составляет уже 125 Вт. В данном режиме загрузки процессора при охлаждении штатным кулером может наблюдаться троттлинг. Напряжение питания ядер процессора в данном режиме составляет 1,027 В.



Теперь посмотрим на особенности работы Core i7-5960X в состоянии разгона. Сразу оговоримся, что в состоянии разгона утилита AIDA64 (мы использовали версию 4.60) не способна определить энергопотребление процессора. Причем на это не способна не только AIDA64, но и другие утилиты (например, HWiNFO64 v4.40). По всей видимости, это особенность платы Asus X99-Deluxe: для того чтобы разогнать процессор, в UEFI BIOS необходимо сначала на вкладке Ai Tweaker изменить параметр Ai Overclocker Tuner, задав ему значение Manual. И сразу после этого (даже без фактического разгона) определение энергопотребления процессора с использованием программных утилит становится невозможным.

Мы разгоняли процессор Core i7-5960X при частоте BCLK 100 МГц путем изменения коэффициента умножения синхронно для всех ядер процессора. Напряжение питания и остальные параметры не изменялись. На плате Asus X99-Deluxe нам удалось разогнать Core i7-5960X до частоты 4,4 ГГц. При этой частоте система запускалась и даже проходила тест Stress CPU, причем без ухода в троттлинг.


А вот тест Stress FPU на данной частоте уже не проходил, его удалось запустить только при частоте 4,2 ГГц. Естественно, как и при работе на номинальной максимальной частоте, при этом включался режим троттлинга и частота процессора снижалась до 3,8 ГГц. Но, тем не менее, в этом режиме процессор функционировал стабильно.


Тестирование

Ну а теперь, после краткого знакомства с процессором Intel Core i7-5960X, ознакомимся с результатами его тестирования в играх и реальных приложениях.

Для оценки производительности процессора Core i7-5960X мы использовали нашу стандартную методику тестирования с применением бенчмарков iXBT Notebook Benchmark v.1.0 и iXBT Game Benchmark v.1.0 . Единственное, что мы изменили - убрали тест скорости загрузки приложений и контента в бенчмарке iXBT Notebook Benchmark v.1.0. Дело в том, что результаты данного теста зависят в первую очередь от производительности подсистемы хранения данных и скорости оперативной памяти, а поскольку мы тестировали непосредственно процессоры, то смысла в этом тесте просто нет. И естественно, интегральный результат рассчитывался без учета теста скорости загрузки приложений и контента.

Процессор Core i7-5960X мы протестировали в двух режимах: штатном и в разгоне. Кроме того, для сравнения мы также протестировали шестиядерные процессоры Cоre i7-4960X (Ivy Bridge-E) и Сore i7-3970X (Sandy Bridge-E). И для полноты картины мы добавили четырехъядерный процессор Core i7-4790K (Devil’s Canyon) , который был протестирован в штатном режиме и в режиме разгона до частоты 4,5 ГГц. Результаты всех тестов нормировались относительно процессора Core i7-4790K в штатном режиме работы, при этом результаты Core i7-4790K для удобства принимались за 100 баллов.

Стенд для тестирования процессоров Cоre i7-4960X и Сore i7-3970X имел следующую конфигурацию:

  • материнская плата: Asus Sabertooth X79,
  • видеокарта: AMD Radeon R9 295X2,
  • режим работы памяти: DDR3-2133 (четырехканальный),
  • накопитель: Intel SSD 520 Series 240 ГБ.

Более подробные данные по конфигурации тестового стенда:




Стенд для тестирования процессора Core i7-4790K имел следующую конфигурацию:

  • материнская плата: Asus H97-Pro Gamer,
  • видеокарта: AMD Radeon R9 295X2,
  • оперативная память: четыре модуля по 4 ГБ Corsair DDR3-2666 (CMD16GX3M4A2666С10),
  • режим работы памяти: DDR3-1600 (двухканальный),
  • накопитель: Intel SSD 520 Series 240 ГБ.

Обратите внимание, что во всех тестовых стендах мы использовали одну и ту же видеокарту, один и тот же SSD-накопитель и один и тот же объем памяти. Причем для процессоров Cоre i7-4960X и Сore i7-3970X мы специально использовали память DDR3 на частоте 2133 МГц. А вот для процессора Core i7-4790K использование памяти Corsair DDR3-2666 в режиме DDR3-2133 оказалось невозможно, поскольку чипсет Intel H97, примененный в материнской плате стенда, не позволяет разгонять память. Так что Core i7-4790K тестировался с памятью, которая работала в режиме DDR3-1600. Впрочем, в случае двухканального режима и достаточно высокой частоты работы памяти (и при использовании дискретной графики) снижение результатов должно быть чисто номинальным.

Итак, обратимся к результатам тестирования наших процессоров c бенчмарке iXBT Notebook Benchmark v.1.0.

В тесте транскодирования с использованием утилиты MediaCoder x64 восьмиядерный процессор Core i7-5960X имеет явное преимущество над всеми соперниками. В штатном режиме работы скорость транскодирования у него на 51% выше скорости транскодирования с использованием четырехъядерного процессора Core i7-4790K.

В тесте с использованием приложения Adobe Premiere Pro CC восьмиядерный процессор Core i7-5960X также является явным лидером и в штатном режиме работы обгоняет четырехъядерный процессор Core i7-4790K на 47%. Как видим, приложение Adobe Premiere Pro CC тоже неплохо оптимизировано под многоядерные процессоры.

Немного более скромный результат получается в тесте с использованием приложения Adobe After Effects CC. Тем не менее, и в этом тесте в штатном режиме работы результат у восьмиядерного процессора Core i7-5960X на 22% лучше, чем у четырехъядерного процессора Core i7-4790K. А вот шестиядерный процессор Core i7-4960X демонстрирует в этом тесте практически такой же результат, что и процессор Core i7-5960X, то есть здесь разница в числе ядер искупается их повышенной частотой работы.

Ну а в тесте c использованием приложения Photodex ProShow Gold (создание фильма из фотографий) процессор Core i7-5960X в штатном режиме работы уступает всем остальным. Похоже, что в этом тесте не задействуются все ядра процессора, и результат в большей степени зависит от частоты, нежели от количества ядер.

В тесте пакетной обработки фотографий c использованием приложения Adobe Photoshop CC процессор Core i7-5960X в штатном режиме работы хотя и имеет небольшое преимущество (15%) над Core i7-4790K, тем не менее, уступает и процессору Core i7-3970X, и процессору Core i7-4960X. И только разгон Core i7-5960X до тактовой частоты 4,2 ГГц позволяет получить уровень производительности, который демонстрируют Core i7-3970X и Core i7-4960X в штатном режиме работы.

В тесте c использованием приложения Adobe Audition восьмиядерный процессор Core i7-5960X потерпел фиаско. В штатном режиме работы он продемонстрировал производительность на 25% ниже, чем Core i7-4790K, и даже разгон до частоты 4,2 ГГц не смог поднять уровень его производительности в этом тесте до уровня процессора Core i7-4790K.

В тесте по распознаванию текста c использованием приложения Abbyy FineReader 11 восьмиядерный процессор Core i7-5960X продемонстрировал неплохой результат, опередив на 23% (в штатном режиме) четырехъядерный Core i7-4790K. Причем в этом тесте Core i7-5960X незначительно опережает и шестиядерные процессоры Core i7-4960Х и Core i7-3970X.

А вот в тесте c использованием приложения WinRAR 5.0 ситуация довольно интересная. При создании архива восьмиядерный процессор Core i7-5960X (в штатном режиме работы) почти на 50% обгоняет четырехъядерный Core i7-4790K и имеет небольшое преимущество над шестиядерными Core i7-3970X и Core i7-4960X. Здесь активно задействованы многопоточные вычисления. Однако при разархивировании данных Core i7-5960X, наоборот, проигрывает четырехъядерному Core i7-4790K почти 26% и уступает процессорам Core i7-3970X и Core i7-4960X.


В целом, интегрально, получаются следующие результаты. В штатном режиме работы восьмиядерный процессор Core i7-5960X оказывается быстрее четырехъядерного процессора с более высокой тактовой частотой всего на 12,6%, при этом уступая и процессору Core i7-4960X (7%), и процессору Core i7-3970X (1,2%), имеющим шесть ядер и более высокую тактовую частоту. Безусловно, есть отдельные приложения, где Core i7-5960X является лидером, но есть и приложения, где этот процессор проигрывает всем остальным или демонстрирует примерно ту же производительность. В целом все не так хорошо, как хотелось бы: ведь если систему на этом процессоре купит (или соберет) человек, просто желающий, не вдаваясь в детали, получить максимум возможного от десктопа, то выбор его окажется далек от оптимального и по абсолютной производительности, и с учетом цены. С другой стороны, если такую систему приобретет человек понимающий, имеющий, чем загрузить 8 процессорных ядер, Core i7-5960X своего владельца не разочарует, обеспечив действительно максимальную производительность в своем классе.

Теперь рассмотрим результаты тестирования в играх (бенчмарк iXBT Game Benchmark v.1.0). Тестирование проводилось при разрешении экрана 1920×1080.


То, что даже при настройках на максимальное качество все игры продемонстрируют комфортный уровень производительности (выше 40 FPS), было очевидно изначально - все-таки речь идет о самых мощных процессорах и самой мощной видеокарте. Показательным в данном случае является тот факт, что в играх восьмиядерный процессор Core i7-5960X не имеет никакого превосходства над шестиядерными процессорами и даже над четырехъядерным Соrе i7-4790K. Более того, без разгона Core i7-5960X обеспечивает даже более низкий уровень производительности в играх (при настройках на максимальное качество) в сравнении с конкурентами. (Исключение составляет лишь игра Metro LL, где при настройках на максимальное качество результаты для всех процессоров практически одинаковы.)

Полученные результаты наглядно демонстрируют, что, во-первых, современные игры не оптимизированы под 8 (и даже 6) ядер процессора, так что четырехъядерного процессора вполне достаточно для игрового ПК. Во-вторых, для игр большее значение имеет производительность видеокарты, нежели процессора, но только в том случае, когда производительности процессора достаточно, чтобы загрузить видеокарту. Именно поэтому разгон процессора по частоте практически не приводит к увеличению производительности в играх.

Выводы

Итак, давайте попытаемся подвести итог нашему тестированию нового восьмиядерного процессора Core i7-5960X (Haswell-E).

Прежде всего, нужно констатировать, что увеличение числа ядер процессора до восьми штук в рамках TDP 150 Вт стало возможным только за счет снижения номинальной тактовой частоты процессора до 3 ГГц. Понятно, что далеко не все пользовательские приложения оптимизированы под многоядерность, и снижение тактовой частоты процессора может негативно отразиться на производительности в таких приложениях. Примерами таких приложений являются Adobe Audition CC, Photodex ProShow Gold и даже операция разархивирования в WinRAR 5.0.

С другой стороны, как выяснилось, процессор Core i7-5960X очень неплохо разгоняется, что позволяет частично скомпенсировать низкое значение номинальной тактовой частоты.

В целом, если рассматривать восьмиядерный процессор Core i7-5960X без привязки к специфическим серверным приложениям, оптимизированным под многопроцессорность и многоядерность, то в сравнении с процессорами Core i7-3970X, Core i7-4960X и даже Core i7-4790K ни о каком прорыве в плане производительности говорить не приходится. В штатном режиме работы, без разгона, этот процессор имеет интегральную производительность даже немного ниже, чем шестиядерные Core i7-3970X и Core i7-4960X. Однако еще раз подчеркнем, что речь идет о стандартных пользовательских приложениях, многие из которых в большей степени чувствительны к частоте процессора, нежели к количеству ядер.

Впрочем, даже с учетом того, что по интегральной производительности в стандартных пользовательских приложениях новый восьмиядерный процессор Core i7-5960X не имеет превосходства над процессорами Core i7-3970X и Core i7-4960X, сама по себе новая платформа на базе чипсета Intel X99 с процессором Haswell-E более функциональна, нежели платформа на базе чипсета Intel X79 с процессором Ivy Bridge-E или Sandy Bridge-E.

В продолжении данной статьи мы рассмотрим еще один любопытный аспект функционирования процессоров Haswell-E. Как мы уже отмечали, далеко не все пользовательские приложения оптимизированы под многоядерность. Идея заключается в том, чтобы проанализировать производительность Core i7-5960X в зависимости от числа активных ядер. Благо материнская плата Asus X99-Deluxe позволяет отключать ядра процессора.

Практически все знают, что в компьютере главным элементом среди всех «железных» компонентов является центральный процессор. Но круг людей, которые представляют себе, как работает процессор, является весьма ограниченным. Большинство пользователей об этом и понятия не имеют. И даже когда система вдруг начинает «тормозить», многие считают, что это процессор плохо работает, и не придают значения другим факторам. Для полного понимания ситуации рассмотрим некоторые аспекты работы ЦП.

Что такое центральный процессор?

Из чего состоит процессор?

Если говорить о том, как работает процессор Intel или его конкурент AMD, нужно посмотреть, как устроены эти чипы. Первый микропроцессор (кстати, именно от Intel, модель 4040) появился еще в далеком 1971 году. Он мог выполнять только простейшие операции сложения и вычитания с обработкой всего лишь 4 бит информации, т. е. имел 4-битную архитектуру.

Современные процессоры, как и первенец, основаны на транзисторах и обладают куда большим быстродействием. Изготавливаются они методом фотолитографии из определенного числа отдельных кремниевых пластинок, составляющих единый кристалл, в который как бы впечатаны транзисторы. Схема создается на специальном ускорителе разогнанными ионами бора. Во внутренней структуре процессоров основными компонентами являются ядра, шины и функциональные частицы, называемые ревизиями.

Основные характеристики

Как и любое другое устройство, процессор характеризуется определенными параметрами, которые, отвечая на вопрос, как работает процессор, обойти стороной нельзя. Прежде всего это:

  • количество ядер;
  • число потоков;
  • размер кэша (внутренней памяти);
  • тактовая частота;
  • быстрота шины.

Пока остановимся на тактовой частоте. Не зря процессор называют сердцем компьютера. Как и сердце, он работает в режиме пульсации с определенным количеством тактов в секунду. Тактовая частота измеряется в МГц или в ГГц. Чем она выше, тем больше операций может выполнить устройство.

На какой частоте работает процессор, можно узнать из его заявленных характеристик или посмотреть информацию в Но в процессе обработки команд частота может меняться, а при разгоне (оверлокинге) увеличиваться до экстремальных пределов. Таким образом, заявленная является всего лишь усредненным показателем.

Количество ядер - показатель, определяющий число вычислительных центров процессора (не путать с потоками - количество ядер и потоков могут не совпадать). За счет такого распределения появляется возможность перенаправления операций на другие ядра, за счет чего повышается общая производительность.

Как работает процессор: обработка команд

Теперь немного о структуре исполняемых команд. Если посмотреть, как работает процессор, нужно четко представлять себе, что любая команда имеет две составляющие - операционную и операндную.

Операционная часть указывает, что должна выполнить в данный момент компьютерная система, операнда определяет то, над чем должен работать именно процессор. Кроме того, ядро процессора может содержать два вычислительных центра (контейнера, потока), которые разделяют выполнение команды на несколько этапов:

  • выработка;
  • дешифрование;
  • выполнение команды;
  • обращение к памяти самого процессора
  • сохранение результата.

Сегодня применяется раздельное кэширование в виде использования двух уровней кэш-памяти, что позволяет избежать перехвата двумя и более командами обращения к одному из блоков памяти.

Процессоры по типу обработки команд разделяют на линейные (выполнение команд в порядке очереди их записи), циклические и разветвляющиеся (выполнение инструкций после обработки условий ветвления).

Выполняемые операции

Среди основных функций, возложенных на процессор, в смысле выполняемых команд или инструкций различают три основные задачи:

  • математические действия на основе арифметико-логического устройства;
  • перемещение данных (информации) из одного типа памяти в другой;
  • принятие решения по исполнению команды, и на его основе - выбор переключения на выполнения других наборов команд.

Взаимодействие с памятью (ПЗУ и ОЗУ)

В этом процессе следует отметить такие компоненты, как шина и канал чтения и записи, которые соединены с запоминающими устройствами. ПЗУ содержит постоянный набор байт. Сначала адресная шина запрашивает у ПЗУ определенный байт, затем передает его на шину данных, после чего канал чтения меняет свое состояние и ПЗУ предоставляет запрошенный байт.

Но процессоры могут не только считывать данные из оперативной памяти, но и записывать их. В этом случае используется канал записи. Но, если разобраться, по большому счету современные компьютеры чисто теоретически могли бы и вовсе обойтись без ОЗУ, поскольку современные микроконтроллеры способны размещать нужные байты данных непосредственно в памяти самого процессорного чипа. Но вот без ПЗУ обойтись никак нельзя.

Кроме всего прочего, старт системы запускается с режима тестирования оборудования (команды BIOS), а только потом управление передается загружаемой операционной системе.

Как проверить, работает ли процессор?

Теперь посмотрим на некоторые аспекты проверки работоспособности процессора. Нужно четко понимать, что, если бы процессор не работал, компьютер бы не смог начать загрузку вообще.

Другое дело, когда требуется посмотреть на показатель использования возможностей процессора в определенный момент. Сделать это можно из стандартного «Диспетчера задач» (напротив любого процесса указано, сколько процентов загрузки процессора он дает). Для визуального определения этого параметра можно воспользоваться вкладкой производительности, где отслеживание изменений происходит в режиме реального времени. Расширенные параметры можно увидеть при помощи специальных программ, например, CPU-Z.

Кроме того, можно задействовать несколько ядер процессора, используя для этого (msconfig) и дополнительные параметры загрузки.

Возможные проблемы

Наконец, несколько слов о проблемах. Вот многие пользователи часто спрашивают, мол, почему процессор работает, а монитор не включается? К центральному процессору эта ситуация не имеет никакого отношения. Дело в том, что при включении любого компьютера сначала тестируется графический адаптер, а только потом все остальное. Возможно, проблема состоит как раз в процессоре графического чипа (все современные видеоускорители имеют собственные графически процессоры).

Но на примере функционирования человеческого организма нужно понимать, что в случае остановки сердца умирает весь организм. Так и с компьютерами. Не работает процессор - «умирает» вся компьютерная система.

Транзистор. Занимательные факты

  • Первый портативный радиоприемник располагал всего четырьмя транзисторами, первый микропроцессор Intel содержал 2300 транзисторов, а в новейших четырехъядерных процессорах Intel на базе 45-нанометровой производственной технологии, выпущенных на рынок в ноябре 2007 года, насчитывается до 820 миллионов транзисторов.
  • Размер 45-нанометрового транзистора в 2000 раз меньше диаметра человеческого волоса.
  • Более 30 миллионов 45-нанометровых транзисторов можно разместить на булавочной головке.
  • Первый транзистор, созданный сотрудниками научно-исследовательского центра Bell Labs в 1947 году, можно было взять в руки, тогда как сотни новейших 45-нанометровых транзисторов Intel способны разместиться на поверхности одной красной кровяной клетки человека.
  • Стоимость транзистора, интегрированного на кристалле новейшего процессора Intel, примерно в миллион раз ниже средней стоимости полупроводникового транзистора, ставшего основой интегральных микросхем в 1968 году. Если бы цены на автомобили снижались столь же стремительно, сегодня новый автомобиль стоил бы около 1 цента.
  • По оценкам аналитиков, ежегодно на планете отгружается такое количество процессоров, которое содержит примерно 10 19 транзисторов, что примерно в 100 раз больше всей популяции муравьев, живущих на Земле.

Этапы большого пути

Телевизоры, автомобили, радиоприемники, медицинские и бытовые приборы, компьютеры, космические «челноки» и даже программируемые дверные замки в гостиницах – наверное, сложно себе представить хоть один мало-мальски сложный электронный прибор из тех, что нас окружают, который не использовал бы транзисторы. Изобретение транзистора 60 лет назад сотрудниками научно-исследовательского центра Bell Labs стало важнейшим фактором, стимулировавшим внедрение многих замечательных инноваций и развитие технологий. Фактически, без транзистора было бы невозможно существование практически всей современной электронно-цифровой индустрии. Именно транзистор – крошечное устройство, элемент микросхемы, действующий подобно миниатюрному выключателю и тем самым позволяющий реализовывать алгоритмы обработки информации – обеспечил феноменальный триумф компьютеров.

В чем же секрет успеха? Микроэлектроника неуклонно развивается, постоянно обогащая инновациями научно-техническое сообщество. Транзисторы с каждым новым поколением технологических процессов их изготовления становятся все более компактными, быстродействующими, все более экономно расходуют энергию. В ноябре 2007 г. инженеры Intel – впервые за многолетнюю историю существования полупроводниковых интегральных микросхем – нарушили кремниевую «монополию» при производстве транзисторов и ввели новые материалы в структуру полупроводниковых компонентов. Это позволило создать микропроцессоры на базе микроархитектуры Intel® Core™, использующие революционную 45-нанометровую производственную технологию с применением подзатворного изолятора (диэлектрика) на основе гафния с высоким коэффициентом диэлектрической проницаемости – high-k, а также металлического затвора, что обеспечивает рекордную производительность и эффективное энергопотребление.

Что же дальше? Корпорация Intel намерена и впредь раздвигать границы возможного за счет технологических инноваций, чтобы создавать новые виды продукции, способные качественным образом изменить нашу жизнь – то, как мы работаем, отдыхаем, обмениваемся информацией.

«Вкл» / «Выкл»

Официальной датой появления на свет первого транзистора считается 23 декабря (по другим данным – 16 декабря) 1947 года, авторами этого замечательного изобретения стали американские физики Уильям Шокли (William Shockley), Джон Бардин (John Bardeen) и Уолтер Браттейн (Walter Brattain). Правда, первоначально ученая общественность встретила это изобретение достаточно прохладно, но уже в 1956 году все три американца были удостоены Нобелевской премии в области физики. Причем, впоследствии Джон Бардин стал единственным за всю историю «нобелевки» дважды лауреатом в одной и той же номинации: вторая премия в области физики была присуждена ему в 1972 году за создание теории сверхпроводимости.

Ну а само название - «транзистор» придумал их коллега Джон Пирс (John R. Pierce). В мае 1948 года он победил во внутреннем конкурсе, организованном среди сотрудников лаборатории, на самое удачное название изобретения, которому на тот момент исполнилось всего несколько месяцев. Слово «transistor» образовано путем соединения двух терминов: «transconductance» (активная межэлектродная проводимость) и «variable resistor» или «varistor» (переменное сопротивление, варистор).

Первыми, кто стал активно применять транзисторы, были радиолюбители, использовавшие эти элементарные приборы для усиления сигнала. Именно поэтому первые портативные беспроводные радиоприемники пятидесятых годов назывались транзисторными, или даже просто - «транзисторами». Однако со временем они стали использоваться в основном как элементы интегральных микросхем, что обеспечило транзистору важнейшую роль в технических достижениях человечества на протяжении последних сорока лет.

Интересно отметить, что транзистор, по существу, делает то же, что и обычный выключатель: включает и выключает ток. Положение включено для транзистора означает «1», положение выключено – «0». Огромное количество транзисторов интегральной микросхемы генерирует единицы и нули, которые складываются в понятный компьютеру бинарный код – «язык», который компьютеры используют в процессе вычислений, обработки текста, воспроизведения фильмов и аудио, демонстрации изображений...

Транзисторы и... рок’н’ролл

Первый транзистор, ток в котором тек вдоль поверхности полупроводника, использовался для усиления проходившего через него электрического сигнала - транзисторы справлялись с этой задачей эффективнее, чем популярные в то время, но более громоздкие и хрупкие электронные лампы.

Чтобы максимально ускорить популяризацию транзисторов, в научно-исследовательском центре Bell Labs было принято решение продать лицензию на транзисторные технологии. Лицензию стоимостью 25000 долларов США приобрели двадцать шесть компаний. Однако для коммерческого успеха транзисторных технологий нужно было привлечь внимание массовой аудитории. Это стало возможным благодаря транзисторным радиоприемникам. Первая модель такого устройства, содержавшая аж четыре транзистора, была представлена в октябре 1954 года. С появлением портативного радиоприемника радиоманы обрели возможность слушать музыку и получать информацию в любом месте – этим сразу же воспользовалась молодежь, получившая возможность вырваться из-под родительской опеки и самоутвердиться с помощью новой субкультуры. Так портативное радио стимулировало новую революцию... и в музыке – в эфире повсеместно зазвучал рок-н-ролл!

Интегральная микросхема

К концу 50-х годов транзистор «обосновался» в радиоприемниках, телефонах и ЭВМ, и хотя его размеры были намного меньше, чем у электронных ламп, для создания нового поколения электронных устройств этого было явно недостаточно. Чтобы реализовать огромный вычислительный потенциал транзисторов, приспособить их для массового производства и снизить стоимость, потребовалось еще одно изобретение.

В 1958 году Джек Килби (Jack Kilby) из компании Texas Instruments и Роберт Нойс (Robert Noyce) из компании Fairchild Semiconductor, ставший впоследствии одним из отцов-основателей корпорации Intel, изобрели способ объединения большого числа полупроводниковых транзисторов в одну интегральную схему, или микросхему. Это был гигантский шаг вперед – ведь прежде отдельные компоненты электрической схемы приходилось соединять вручную.

У микросхем было два преимущества: более низкая стоимость и более высокая производительность. Оба преимущества явились следствием миниатюризации, которая обеспечивала экспоненциальное сокращение размеров устройств и необычайную динамичность производственного процесса. Гордон Мур (Gordon Moore), который в 1968 году вместе с Нойсом основал процессорный гигант Intel, в одной из журнальных статей сформулировал прогноз, опубликованный в 1965 году и получивший название «закон Мура». Согласно этому закону число транзисторов в микросхеме должно было удваиваться каждые полтора-два года, что в свою очередь обеспечивало бы повышение вычислительной мощности и снижение конечной стоимости продукта при его массовом производстве. Возможность размещения множества компактных элементов на поверхности малого размера оказалась решающим фактором для успешного продвижения микросхем.

Производителям микросхем удается поддерживать этот экспоненциальный рост плотности размещения транзисторов в микросхеме на протяжении десятков лет. Первый компьютерный микропроцессор корпорации Intel® 4004, выпущенный в 1971 году, содержал 2300 транзисторов. В 1989 году в процессоре Intel® 486 их было уже 1 200 000, а в 2000 году процессор Intel® Pentium® 4 преодолел рубеж в 42 миллиона. Новый четырехъядерный процессор Intel® Core™ 2 Extreme, созданный на базе 45-нанометровой производственной технологии, содержит 820 миллионов транзисторов.

Игры атомов

Закону Мура постоянно предсказывают кончину. Бесконечный экспоненциальный рост невозможен по определению – и все-таки производителям процессоров до сих пор удается обходить ограничение. В сентябре прошлого года Гордон Мур заявил, что у закона его имени есть все шансы оставаться в силе еще как минимум лет 10-15, но затем могут возникнуть новые фундаментальные барьеры на пути его реализации. Так или иначе, но этот самый известный закон компьютерного мира XXI века ждали трудные времена.

Битва за миниатюризацию исчерпала возможности одного из наиболее критических компонентов транзистора: прослойки из диоксида кремния (SiO2), служившей изолирующим слоем между затвором транзистора и его каналом, по которому течет ток, когда транзистор включен. С каждым новым поколением процессоров этот изолирующий слой становился все более тонким – пока два поколения назад его толщина не достигла значения 1,2 нм, или 5 атомов. Инженеры Intel уже не смогли сделать этот слой тоньше хотя бы еще на один атом.

По мере уменьшения толщины изолирующего слоя рос ток утечки. Изолирующий слой начал пропускать ток внутрь транзистора, поведение устройства изменилось, оно стало рассеивать все большее количество энергии. В результате выросло потребление тока процессором, при его работе выделялось дополнительное количество теплоты.

Фундаментальный предел

Утечка тока в транзисторе стала серьезнейшей проблемой полупроводниковой отрасли: без прорыва в этой области давно предсказанный фундаментальный предел становился непреодолимым. Причем, это означало не только конец закона Мура – цифровая революция последних десятилетий внезапно бы прекратилась. Компьютерные процессоры, практически удваивавшие свою производительность каждые 24 месяца, могли кануть в Лету.

Чтобы найти выход из кризиса, нужно было увеличить толщину изолирующего слоя, но изготавливать этот более толстый слой из другого диэлектрического материала с более высоким коэффициентом диэлектрической проницаемости (high-k) для сохранения характера взаимодействия затвора и канала. В январе 2007 года корпорация Intel объявила, что впервые за сорок лет изолирующий слой будет состоять не из оксида кремния, а из материала на основе гафния, серебристо-серого металла, превосходящего кремний по электрическим свойствам и позволяющего снизить ток утечки в десять раз. Сам Гордон Мур назвал это крупное достижение «самым важным изменением транзисторных технологий с конца шестидесятых годов».

Однако данный прорыв решал проблему лишь наполовину. Новый материал оказался несовместимым с важным компонентом транзистора – с затвором. Еще хуже то, что транзисторы с новым изолирующим материалом работали менее эффективно, чем со старым. Тогда было предложено заменить и материал затвора: корпорация Intel открыла уникальное сочетание металлов, состав которого держится в строгом секрете.

12 ноября 2007 года корпорация Intel представила новое поколение процессоров на основе этих материалов и 45-нанометровой производственной технологии. Новая производственная технология, более тонкая, чем предыдущая 65-нанометровая, позволила Intel почти вдвое увеличить число транзисторов, размещаемых на той же площади кристалла – теперь можно было выбирать между увеличением общего числа транзисторов и уменьшением размеров процессора. Новым транзисторам требуется на 30% меньше энергии для включения и выключения. В итоге новое поколение процессоров Intel, изготовленных по 45-нанометровой производственной технологии, не только демонстрирует рекордную производительность, но и знаменует прорыв в области энергопотребления.

Повышение вычислительной мощности, являющееся следствием закона Мура, позволяет человечеству эффективнее просчитывать пути разрешения важнейших стоящих перед ним проблем: изменение климата, наследственные болезни, тайны генетики и др. Современные пути и темпы решения подобных проблем еще пять лет назад трудно было себе даже представить. Новые приложения помогают изменить нашу жизнь и сделать ее еще более безопасной...

Количество транзисторов в процессоре:

Процессоры и производственная технология:

Наверное, каждый пользователь мало знакомый с компьютером сталкивался с кучей непонятных ему характеристик при выборе центрального процессора: техпроцесс, кэш, сокет; обращался за советом к друзьям и знакомым, компетентным в вопросе компьютерного железа. Давайте разберемся в многообразии всевозможных параметров, потому как процессор – это важнейшая часть вашего ПК, а понимание его характеристик подарит вам уверенность при покупке и дальнейшем использовании.

Центральный процессор

Процессор персонального компьютера представляет собой микросхему, которая отвечает за выполнение любых операций с данными и управляет периферийными устройствами. Он содержится в специальном кремниевом корпусе, называемом кристаллом. Для краткого обозначения используют аббревиатуру — ЦП (центральный процессор) или CPU (от англ. Central Processing Unit – центральное обрабатывающее устройство). На современном рынке компьютерных комплектующих присутствуют две конкурирующие корпорации, Intel и AMD , которые беспрестанно участвуют в гонке за производительность новых процессоров, постоянно совершенствуя технологический процесс.

Техпроцесс

Техпроцесс — это размер, используемый при производстве процессоров. Он определяет величину транзистора, единицей измерения которого является нм (нанометр). Транзисторы, в свою очередь, составляют внутреннюю основу ЦП. Суть заключается в том, что постоянное совершенствование методики изготовления позволяет уменьшать размер этих компонентов. В результате на кристалле процессора их размещается гораздо больше. Это способствует улучшению характеристик CPU, поэтому в его параметрах всегда указывают используемый техпроцесс. Например, Intel Core i5-760 выполнен по техпроцессу 45 нм, а Intel Core i5-2500K по 32 нм, исходя из этой информации, можно судить о том, насколько процессор современен и превосходит по производительности своего предшественника, но при выборе необходимо учитывать и ряд других параметров.

Архитектура

Также процессорам свойственно такая характеристика, как архитектура - набор свойств, присущий целому семейству процессоров, как правило, выпускаемому в течение многих лет. Говоря другими словами, архитектура – это их организация или внутренняя конструкция ЦП.

Количество ядер

Ядро – самый главный элемент центрального процессора. Оно представляет собой часть процессора, способное выполнять один поток команд. Ядра отличаются по размеру кэш памяти, частоте шины, технологии изготовления и т. д. Производители с каждым последующим техпроцессом присваивают им новые имена (к примеру, ядро процессора AMD – Zambezi, а Intel – Lynnfield). С развитием технологий производства процессоров появилась возможность размещать в одном корпусе более одного ядра, что значительно увеличивает производительность CPU и помогает выполнять несколько задач одновременно, а также использовать несколько ядер в работе программ. Многоядерные процессоры смогут быстрее справиться с архивацией, декодированием видео, работой современных видеоигр и т.д. Например, линейки процессоров Core 2 Duo и Core 2 Quad от Intel, в которых используются двухъядерные и четырехъядерные ЦП, соответственно. На данный момент массово доступны процессоры с 2, 3, 4 и 6 ядрами. Их большее количество используется в серверных решениях и не требуется рядовому пользователю ПК.

Частота

Помимо количества ядер на производительность влияет тактовая частота . Значение этой характеристики отражает производительность CPU в количестве тактов (операций) в секунду. Еще одной немаловажной характеристикой является частота шины (FSB – Front Side Bus) демонстрирующая скорость, с которой происходит обмен данных между процессором и периферией компьютера. Тактовая частота пропорциональна частоте шины.

Сокет

Чтобы будущий процессор при апгрейде был совместим с имеющейся материнской платой, необходимо знать его сокет. Сокетом называют разъем , в который устанавливается ЦП на материнскую плату компьютера. Тип сокета характеризуется количеством ножек и производителем процессора. Различные сокеты соответствуют определенным типам CPU, таким образом, каждый разъём допускает установку процессора определённого типа. Компания Intel использует сокет LGA1156, LGA1366 и LGA1155, а AMD — AM2+ и AM3.

Кэш

Кэш - объем памяти с очень большой скоростью доступа, необходимый для ускорения обращения к данным, постоянно находящимся в памяти с меньшей скоростью доступа (оперативной памяти). При выборе процессора, помните, что увеличение размера кэш-памяти положительно влияет на производительность большинства приложений. Кэш центрального процессора различается тремя уровнями (L1, L2 и L3 ), располагаясь непосредственно на ядре процессора. В него попадают данные из оперативной памяти для более высокой скорости обработки. Стоит также учесть, что для многоядерных CPU указывается объем кэш-памяти первого уровня для одного ядра. Кэш второго уровня выполняет аналогичные функции, отличаясь более низкой скоростью и большим объемом. Если вы предполагаете использовать процессор для ресурсоемких задач, то модель с большим объемом кэша второго уровня будет предпочтительнее, учитывая что для многоядерных процессоров указывается суммарный объем кэша L2. Кэшем L3 комплектуются самые производительные процессоры, такие как AMD Phenom, AMD Phenom II, Intel Core i3, Intel Core i5, Intel Core i7, Intel Xeon. Кэш третьего уровня наименее быстродействующий, но он может достигать 30 Мб.

Энергопотребление

Энергопотребление процессора тесно связано с технологией его производства. С уменьшением нанометров техпроцесса, увеличением количества транзисторов и повышением тактовой частоты процессоров происходит рост потребления электроэнергии CPU. Например, процессоры линейки Core i7 от Intel требуют до 130 и более ватт. Напряжение подающееся на ядро ярко характеризует энергопотребление процессора. Этот параметр особенно важен при выборе ЦП для использования в качестве мультимедиа центра. В современных моделях процессоров используются различные технологии, которые помогают бороться с излишним энергопотреблением: встраиваемые температурные датчики, системы автоматического контроля напряжения и частоты ядер процессора, энергосберегающие режимы при слабой нагрузке на ЦП.

Дополнительные возможности

Современные процессоры приобрели возможности работы в 2-х и 3-х канальных режимах с оперативной памятью, что значительно сказывается на ее производительности, а также поддерживают больший набор инструкций, поднимающий их функциональность на новый уровень. Графические процессоры обрабатывают видео своими силами, тем самым разгружая ЦП, благодаря технологии DXVA (от англ. DirectX Video Acceleration – ускорение видео компонентом DirectX). Компания Intel использует вышеупомянутую технологию Turbo Boost для динамического изменения тактовой частоты центрального процессора. Технология Speed Step управляет энергопотреблением CPU в зависимости от активности процессора, а Intel Virtualization Technology аппаратно создает виртуальную среду для использования нескольких операционных систем. Также современные процессоры могут делиться на виртуальные ядра с помощью технологии Hyper Threading . Например, двухъядерный процессор способен делить тактовую частоту одного ядра на два, что способствует высокой производительности обработки данных с помощью четырех виртуальных ядер.

Размышляя о конфигурации вашего будущего ПК, не забывайте про видеокарту и ее GPU (от англ. Graphics Processing Unit – графическое обрабатывающее устройство) – процессор вашей видеокарты, который отвечает за рендеринг (арифметические операции с геометрическими, физическими объектами и т.п.). Чем больше частота его ядра и частота памяти, тем меньше будет нагрузки на центральный процессор. Особенное внимание к графическому процессору должны проявить геймеры.

Итак, несмотря на внедряемые в мозг россиян мифы, мол, в России не производят ничего, тем более процессоры, отсталые и т.д. По факту, наши современные микросхемы и процессоры производятся и идут в том числе на экспорт, поскольку при сопоставимых с конкурентами характеристиках значительно дешевле. Это известно среди специалистов, но плохо известно широкому обывателю, тут мы просто сильно отстаём в освещении своих достижений.

Я постараюсь немного исправить этот пробел, но поскольку статья популярная -- в ней будет множество упрощений и допущений.

Как обыватели, мы ошибочно сравниваем все процессоры со знакомыми Intel и AMD, с ведущими грандами. Да, они крутые, и достичь таких же впечатляющих характеристик пока никто не может. Когда-то давно с ними наравне был Cirrus - но он сошел с дистанции и ушел из сегмента процессоров для настольных ПК. Однако люди, знакомые с микроэлектроникой, уже на этом абзаце улыбаются -- дело в том, что знакомые нам Intel и AMD занимают совершенно ничтожную долю мирового рынка, даже в категории "гражданские процессоры общего назначения". (Почему гражданские, об этом в следующих частях).

Далее я для упрощения забугорным словом "процессор" буду называть все микроконтроллеры с программируемой аппаратно или программно логикой, не забивая голову читателя деталями.

Процессоры есть везде. Мы привыкли что они в нашем компьютере, но нет, если оглянуться вокруг, они повсюду - даже в телевизоре, мультиварке и микроволновке .

Прежде чем я вообще буду говорить о современных российских процессорах, читателю следует узнать о самом важном про процессоры, какие у них тонкие моменты.

О гигагерцах и нанометрах

Пока познакомлю читателя с основами.

Техпроцесс производства электроники мы привыкли измерять в нанометрах (нм). Грубо говоря, это влияет на размер одного транзистора в процессоре. Чем меньше нанометров, тем меньше каждый транзистор. А их в каждом процессоре от тысяч до миллиардов.

Чем это хорошо? Тем, что при том же энергопотреблении можно на кристалле разместить больше транзисторов -- они же совсем маленькие становятся.

Но каждый из них потребляет энергию, и чем транзистор меньше, тем меньше энергии ему требуется для работы, а электричество нынче дорого.

Почему же мы не можем просто сделать за копейки один большой кристалл с "миллиардом" транзисторов по техпроцессу 90нм, а делаем их дорогие и маленькие 22нм? Технически всё возможно, но тут есть нюанс. В силу законов физики, каждый транзистор при работе выделяет тепло. Чем "толще" транзистор, тем больше побочного тепла каждый из них выделяет, и если процессор сделан по техпроцессу 22нм, то его еще можно охлаждать просто воздушным кулером, как в вашем домашнем компьютере.

Точно такой же процессор, но "толщиной" 90нм будет греться, как забытая сковородка. Но есть и другая проблема, она состоит в частоте процессора.

Частота процессора . Еще один показатель, которым привык оперировать обыватель. Частота процессоров уже много лет не растёт, вы наверное заметили. Если в 90-х годах она росла, удваиваясь с каждой новой моделью, потом было замедление, а к 2010-му мы "зависли" в районе ~3 гигагерца (Ghz), и рост прекратился... И этому есть два объяснения. Первое простое -- снова тепло. Чем чаще мы "переключаем" каждый транзистор, тем сильнее он греется.

Кто видел видео про "оверклокеров" (люди, занимающиеся повышением производительности на нештатных токах и частотах), которые "разгоняют" процессоры до немыслимых частот, то заметили наверное, что там для охлаждения используются стаканы, куда периодически подливают жидкий азот.

Вы бы наверняка не хотели дома со своим компьютером делать такое, чтобы почитать эту статью в браузере =)

Тем более на таких частотах процессор работает крайне нестабильно и выдает кучу ошибок с неизбежным "синим экраном смерти"

Есть и вторая причина, связанная с первой. Она не так очевидна, поскольку внезапно связана, "та-дам", со скоростью света.

Дело в том, что электрический ток в процессорах распространяется со скоростью света (почти, это грубое приближение, но будем считать так). Давайте посчитаем, вот у нас процессор 3 гигагерца. Т.е. 3 миллиарда тактов (тактовых отсчетов внутренней логики) за секунду. Считаем: 1 / 3000000000 = 3,3^-10 секунд на один такт. За это время со скоростью света электрон "пролетит" по проводам 0,0001км, т.е. всего 10 см. !

Это немыслимо мало с учетом размера процессора и его изогнутых в 3-х измерениях внутренних дорожек, т.е. разные части процессора будут себя вести рассогласовано . Когда в одном конце кристалла начался новый такт с новой логикой, в другом конце еще не закончился предыдущий, еще не достиг своего блока вывода! Это очень плохо, это так же плохо, как у человека раздвоение личности.

С этим по-разному борятся, именно поэтому инженеры так любят хвастаться схемами блоков на кристалле процессора, вроде таких:

Особенно важно похвастаться количеством транзисторов на площадь кристалла. Вы ведь уже поняли про скорость света?

Это не самая подробная схема, но каждый раз это победа инженерной мысли, и, соответственно, подробные схемы расположения логических блоков - это коммерческая тайна.

Почему же огромная тактовая частота не важна? Вы уже догадались, процессоры давно перестали расти "вверх" (увеличивать частоту ради производительности), а стали расти "вширь":

иметь больше ядер практичнее с точки зрения роста производительности.

Мы все знаем про процессоры типа Pentium Core2Duo, Core i5 и т.д., у многих дома даже мощные i7 с частотой целых 3,4Ghz !

А еще мы знаем, что есть элитная серия процессоров для серверов и суперкомпьютеров -- крутейшие процессоры серии Xeon , которые стоят немеряно, неприлично дорого. Если захотите прикупить компьютер с таким процессором домой, то лучше сказать жене, что это обычный дешевый компьютер, а шумит он так сильно и такой большой, потому что очень дешевый, "пары тысяч рублей на маленький тихий корпус не хватило..." У меня так знакомый профессиональный фотограф без палева объективы за десятки тысяч рублей покупает.

Так вот, в среднем тактовая частота этой элиты, внезапно, всего 2,2Ghz. Задумайтесь. Прежде чем критиковать российский процессор Эльбрус за низкую частоту.

Я даже закину удочку, а что, если я скажу вам, что по факту производительность Эльбруса сопоставима с вдвое более высокочастотными процессорами Intel из высокого и дорогого сегмента?

Но, об этом в следующих частях.

Заключение Ч.1

Итак, уважаемый читатель, из первой части вы поняли, что современные процессоры и их производительность это тонкий баланс взаимоисключающих условий:

"толщина" транзистора + количество транзисторов в самом процессоре + размер кристалла процессора + ограничение по скорости света + тактовая частота.

Найти тут баланс можно множеством разных способов, как это было сделано в России - я расскажу позже, а пока на подходе Ч.2 , в которой я очень просто расскажу, как работает отдельный транзистор в процессоре, почему они до сих пор не 1нм "толщиной", причем тут квантовая физика и физика высоких энергий из космоса. Да-да, это важно, но это будет рассказано простым понятным языком, не пугайтесь.

А последствия квантовой физики вы можете увидеть прям сейчас на своем компьютере, зайдя в BIOS (если умеете) -- там вы увидите пункт "Spread spectrum", которого для старых процессоров еще не было, а теперь есть. Это она, родимая, борьба с квантовыми эффектами на процессоре вашего домашнего ПК.

И да пребудет с вами сила!

О российских микросхемах и процессорах - всё хорошо, ребята! Ч.2

Введение

Итак, в предыдущей части мы рассмотрели, как уменьшение размеров транзисторов в процессорах (уменьшение техпроцесса) дает положительный эффект (в гражданских процессорах).

Чтобы лучше понимать в предмете (к концу третьей части вы будете смеяться над критиками российских процессоров, причем сможете аргументировать), поговорим, почему уменьшение техпроцесса часто противопоказано, и что в будущем человечество (при существующих технологиях) "упрется" в 7 нанометров (нм). Чтобы понять все это, поговорим о "кирпичиках" процессора - миллиардах его транзисторов.

Мы будем периодически проводить аналогию с краном с водой. На этой аналогии можно показать все проблемы

Враги маленьких транзисторов. Слишком чувствительные

Все вычисления в процессорах, как вы знаете, состоят из нулей и единиц. 011000110101 и т.д.

Как же их различают?

Дело в том, что в электронике нет никаких нулей и единиц. Есть пороговое значение напряжения, ниже которого считается, что это "логический 0", выше которого считается, что это "логическая 1".

"Толстый" транзистор чувствительный как слон. Маленький же транзистор чувствителен, как жена-истеричка -- достаточно малейшего повода, чтобы из спокойного состояния она перешла к психозу.

Процессору с современным малым техпроцессом требуются:

1. Суперстабильное питание, без малейших скачков и провалов. Привет от военных!

2. Отсутствие наводок и электромагнитных помех. Привет из космоса!

Иначе 0 может превратиться в 1 и наоборот. А это ошибка в программе, сбой, глюк.

Вашему дешевому домашнему компьютеру ничего такого не грозит, наслаждайтесь, но в остальных двух категориях эволюция вынужденно пошла по другому пути. Там мегагерцы и "тонкие" транзисторы не нужны, и даже вредны. Но об этом будет в заключительной третьей части, когда буду говорить уже о конкретных процессорах.

Сравним транзистор с водопроводным краном у вас на кухне. Старый кран для полного напора надо было открыть на два оборота. Вам поставили более продвинутый водопроводный кран, но теперь, едва прикоснувшись, из него начинает хлестать струя полного напора. Вы теперь боитесь даже дышать возле него.

Враги маленьких транзисторов. Квантовые эффекты

Представьте себе, что у вас в руках ракетка для тенниса, и вы играете со стеной. Любой человек в здравом уме скажет, что мячик от стены отскакивает. Всегда.

Но вот однажды мячик не отскочил - он просто "как сквозь землю провалился". В данном случае сквозь стену.

Это называется "туннелирование". Квантовый эффект, невозможный в макромире, при очень малых размерах вполне себе существует.

Сравним транзистор с водопроводным краном у вас на кухне. Кран закрыт - вода не течет = 0. Кран открыт = 1. Вам поставили более продвинутый водопроводный кран, но почему-то когда вы его полностью закрываете -- вода продолжает тонко струиться.
Хуже того, у ваших соседей началась такая же фигня.
(эффект влияет и на соседние транзисторы)

Враги маленьких транзисторов. Ток утечки

Любому транзистору и проводнику требуется слой диэлектрика. Диэлектрик ток не пропускает. Чем меньше техпроцесс, тем тоньше слой диэлектрика.

Проблема в том, что ничего на свете не бывает идеального (особенно сделанном руками человека). В любом случае, в диэлектрике имеются дефекты. Если пара-тройка дефектов в "толстом" диэлектрике на малых токах роли не роялят, то в "тонком" диэлектрике это уже проблема, и возникают токи утечки.

Инженеры по-разному извращаются, экспериментируют с различными материалами, но факт -- практически половина тепла, выделяемого вашим процессором, это ток утечки, т.е. это половина всей потребляемой процессором энергии.

Сравним транзистор с водопроводным краном у вас на кухне. Вам поставили более продвинутый водопроводный кран, с более продвинутыми тонкими трубами. Трубы эти настолько тонкие, что сквозь них сочится вода!
Вы ставите еще более продвинутый кран, но воды стало сочиться еще больше...

Заключение второй части

Наука не стоит на месте, а компании гонятся за прибылями. Союз этих двух сил породил у нас иллюзию, что "чем больше гигарерц -- тем круче " (процессор Эльбрус на практике с этим спорит, об этом в следующей части).

"Чем меньше техпроцесс -- тем круче ". Да, выше энергоэффективность и выше производительность. Да, это конечно так, но порождает огромные проблемы. Инженеры из TSMC вычислили математически, что при идеальных условиях (а значит недостижимых) физически возможный предел -- это 5 нанометров. Далее нужны иные физические принципы для электронной логики, например, основанные на значении спина протона.

Но есть и другие процессоры. Вообще, их принято делить на три категории:

1. Commercial (у нас "приёмка 1") -- обычные гражданские, для коммерческого использования. Именно такие на вашем компьютере, смартфоне, в микроволновке.

2. Military (у нас "приёмка 5") -- с ограниченным распространением, для военной техники, оборонных производств, авионики и т.д. Очень дорогие.

3. Space (у нас "приёмка 9") -- Для космоса и ядерных электростанций. С самым ограниченным распространением. Изготавливаются по технологиям, уже не имеющим почти ничего общего с первой. Запредельно дорогие.

Если хотите приключений, начните настойчиво искать, у кого бы прикупить процессоров на сапфировой подложке -- познакомитесь с интересными и неулыбчивыми людьми.

В следующей части будет уже про конкретнее о самих процессорах, особенно применительно к категориям, описанным чуть выше.