Ремонт Стены Уход

Обыкновенная дробь бывает. Деление десятичных дробей

В математике дробь - это число, состоящее из одной или нескольких частей (долей) единицы. По форме записи дроби делятся на обыкновенные (пример \frac{5}{8}) и десятичные (например 123,45).

Определение. Обыкновенная дробь (или простая дробь)

Обыкновенной (простой) дробью называется число вида \pm\frac{m}{n} где m и n – натуральные числа. Число m называется числителем этой дроби, а число n – её знаменателем .

Горизонтальная или косая черта обозначает знак деления, то есть \frac{m}{n}={}^m/n=m:n

Обыкновенные дроби делятся на два вида: правильные и неправильные.

Определение. Правильная и неправильная дроби

Правильной называется дробь, у которой модуль числителя меньше модуля знаменателя. Например, \frac{9}{11} , ведь 9

Неправильной называется дробь, у которой модуль числителя больше или равен модулю знаменателя. Такая дробь представляет собой рациональное число, по модулю большее или равное единице. Примером будут дроби \frac{11}{2} , \frac{2}{1} , -\frac{7}{5} , \frac{1}{1}

Наряду с неправильной дробью существует иная запись числа, которая называется смешанной дробью (смешанным числом). Такая дробь не является обыкновенной.

Определение. Смешанная дробь (смешанное число)

Смешанной дробью называется дробь, записанная в виде целого числа и правильной дроби и понимается как сумма этого числа и дроби. Например, 2\frac{5}{7}

(запись в виде смешанного числа) 2\frac{5}{7}=2+\frac{5}{7}=\frac{14}{7}+\frac{5}{7}=\frac{19}{7} (запись в виде неправильной дроби)

Дробь является всего лишь записью числа. Одному и тому же числу могут соответствовать разные дроби, как обыкновенные, так и десятичные. Сформируем признак равенства двух обыкновенных дробей.

Определение. Признак равенства дробей

Две дроби \frac{a}{b} и \frac{c}{d} являются равными , если a\cdot d=b\cdot c . Например, \frac{2}{3}=\frac{8}{12} так как 2\cdot12=3\cdot8

Из указанного признака следует основное свойство дроби.

Свойство. Основное свойство дроби

Если числитель и знаменатель данной дроби умножить или разделить на одно и то же число, неравное нулю, то получится дробь, равная данной.

\frac{A}{B}=\frac{A\cdot C}{B\cdot C}=\frac{A:K}{B:K};\quad C \ne 0,\quad K \ne 0

С помощью основного свойства дроби можно заменить данную дробь другой дробью, равной данной, но с меньшими числителем и знаменателем. Такая замена называется сокращением дроби. Например, \frac{12}{16}=\frac{6}{8}=\frac{3}{4} (здесь числитель и знаменатель разделили сначала на 2, а потом ещё на 2). Сокращение дроби можно провести тогда и только тогда, когда её числитель и знаменатель не являются взаимно простыми числами. Если же числитель и знаменатель данной дроби взаимно просты, то дробь сократить нельзя, например, \frac{3}{4} – несократимая дробь.

Правила для положительных дробей:

Из двух дробей с одинаковыми знаменателями больше та дробь, числитель которой больше. Например, \frac{3}{15}

Из двух дробей с одинаковыми числителями больше та дробь, знаменатель которой меньше. Например, \frac{4}{11}>\frac{4}{13} .

Чтобы сравнить две дроби с разными числителями и знаменателями, нужно преобразовать обе дроби так, чтобы их знаменатели стали одинаковыми. Такое преобразование называется приведением дробей к общему знаменателю.

Определение обыкновенной дроби

Определение 1

Обыкновенные дроби используют для описания числа долей. Рассмотрим пример, с помощью которого можно дать определение обыкновенной дроби.

Яблоко разделили на $8$ долей. В этом случае каждая доля представляет одну восьмую долю целого яблока, т. е. $\frac{1}{8}$. Две доли обозначаются $\frac{2}{8}$, три доли -- $\frac{3}{8}$ и т.д., а $8$ долей -- $\frac{8}{8}$. Каждая из представленных записей называется обыкновенной дробью .

Приведем общее определение обыкновенной дроби.

Определение 2

Обыкновенной дробью называется запись вида $\frac{m}{n}$, где $m$ и $n$-- любые натуральные числа.

Часто можно встретить следующую запись обыкновенной дроби: $m/n$.

Пример 1

Примеры обыкновенных дробей:

\[{3}/{4}, \frac{101}{345},\ \ {23}/{5}, \frac{15}{15}, {111}/{81}.\]

Замечание 1

Числа $\frac{\sqrt{2}}{3}$, $-\frac{13}{37}$, $\frac{4}{\frac{2}{7}}$, $\frac{2,4}{8,3}$ не являются обыкновенными дробями, т.к. не подходят под вышеприведенное определение.

Числитель и знаменатель

Обыкновенная дробь состоит из числителя и знаменателя.

Определение 3

Числителем обыкновенной дроби $\frac{m}{n}$ называется натуральное число $m$, которое показывает количество взятых равных долей из единого целого.

Определение 4

Знаменателем обыкновенной дроби $\frac{m}{n}$ называется натуральное число $n$, которое показывает, на сколько равных долей разделено единое целое.

Рисунок 1.

Числитель располагается над дробной чертой, а знаменатель --под дробной чертой. Например, числителем обыкновенной дроби $\frac{5}{17}$ является число $5$, а знаменателем -- число $17$. Знаменатель показывает, что предмет разделен на $17$ долей, а числитель -- что взято $5$ таких долей.

Натуральное число как дробь со знаменателем 1

Знаменателем обыкновенной дроби может быть единица. В таком случае считают, что предмет неделим, т.е. представляет собой единое целое. Числитель такой дроби показывает, сколько целых предметов взято. Обыкновенная дробь вида $\frac{m}{1}$ имеет смысл натурального числа $m$. Таким образом получаем обоснованное равенство $\frac{m}{1}=m$.

Если переписать равенство в виде $m=\frac{m}{1}$, то оно даст возможность любое натуральное число $m$ представить в виде обыкновенной дроби. Например, число $5$ можно представить в виде дроби $\frac{5}{1}$, число $123 \ 456$ -- это дробь $\frac{123\ 456}{1}$.

Таким образом, любое натуральное число $m$ можно представить в виде обыкновенной дроби со знаменателем $1$, а любую обыкновенную дробь вида $\frac{m}{1}$ можно заменить натуральным числом $m$.

Дробная черта как знак деления

Представление предмета в виде $n$ долей является делением на $n$ равных частей. После деления предмета на $n$ долей его можно разделить поровну между $n$ людьми -- каждый получит по одной доле.

Пусть имеется $m$ одинаковых предметов, разделенных на $n$ долей. Эти $m$ предметов можно поровну разделить между $n$ людьми, если раздать каждому человеку по одной доле от каждого из $m$ предметов. При этом каждый человек получит $m$ долей $\frac{1}{n}$, которые дают обыкновенную дробь $\frac{m}{n}$. Получаем, что обыкновенная дробь $\frac{m}{n}$ может применяться для обозначения деления $m$ предметов между $n$ людьми.

Связь между обыкновенными дробями и делением выражается в том, что дробную черту можно понимать как знак деления, т.е. $\frac{m}{n}=m:n$.

Обыкновенная дробь дает возможность записывать результат деления двух натуральных чисел, для которых не выполняется деление нацело.

Пример 2

Например, результат деления $7$ яблок на $9$ человек можно записать как $\frac{7}{9}$, т.е. каждый получит семь девятых долей яблока: $7:9=\frac{7}{9}$.

Равные и неравные обыкновенные дроби, сравнение дробей

Результатом сравнения двух обыкновенных дробей может быть или их равенство, или их не равенство. При равенстве обыкновенных дробей их называют равными, в другом случае обыкновенные дроби называют неравными.

равными , если справедливым является равенство $a\cdot d=b\cdot c$.

Обыкновенные дроби $\frac{a}{b}$ и $\frac{c}{d}$ называют неравными , если равенство $a\cdot d=b\cdot c$ не выполняется.

Пример 3

Выяснить, являются ли равными дроби $\frac{1}{3}$ и $\frac{2}{6}$.

Равенство выполняется, значит, дроби $\frac{1}{3}$ и $\frac{2}{6}$ являются равными: $\frac{1}{3}=\frac{2}{6}$.

Данный пример можно рассмотреть на примере яблок: одно из двух одинаковых яблок разделено на три равные доли, второе -- на $6$ долей. При этом видно, что две шестых доли яблока составляют $\frac{1}{3}$ долю.

Пример 4

Проверить, являются ли равными обыкновенные дроби $\frac{3}{17}$ и $\frac{4}{13}$.

Проверим, выполняется ли равенство $a\cdot d=b\cdot c$:

\ \

Равенство не выполняется, значит, дроби $\frac{3}{17}$ и $\frac{4}{13}$ не равны: $\frac{3}{17}\ne \frac{4}{13}$.

При сравнении двух обыкновенных дробей, если выясняется, что они не равны, можно узнать, какая из них больше, а какая -- меньше другой. Для этого используют правило сравнения обыкновенных дробей: нужно привести дроби к общему знаменателю и затем сравнить их числители. У какой дроби числитель будет больше, та дробь и будет являться большей.

Дроби на координатном луче

Все дробные числа, которые отвечают обыкновенным дробям, можно отобразить на координатном луче.

Чтобы на координатном луче отметить точку, которая соответствует дроби $\frac{m}{n}$, необходимо от начала координат в положительном направлении отложить $m$ отрезков, длина которых составляет $\frac{1}{n}$ долю единичного отрезка. Такие отрезки получают при делении единичного отрезка на $n$ равных частей.

Чтобы отобразить на координатном луче дробное число, нужно единичный отрезок разделить на части.

Рисунок 2.

Равные дроби описываются одним и тем же дробным числом, т.е. равные дроби представляют собой координаты одной и той же точки на координатном луче. Например, координатами $\frac{1}{3}$, $\frac{2}{6}$, $\frac{3}{9}$, $\frac{4}{12}$ описывается одна и та же точка на координатном луче, так как все записанные дроби равны.

Если точка описывается координатой с большей дробью, то она будет находится правее на горизонтальном направленном вправо координатном луче от точки, координатой которой является меньшая дробь. Например, т.к. дробь $\frac{5}{6}$ больше дроби $\frac{2}{6}$, то и точка с координатой $\frac{5}{6}$ находится правее точки с координатой $\frac{2}{6}$.

Аналогично, точка с меньшей координатой будет лежать левее точки с большей координатой.

Числителем, а то, на которое делят - знаменателем.

Чтобы записать дробь, напишите сначала ее числитель, затем проведите под этим числом горизонтальную черту, а под чертой напишите знаменатель. Горизонтальная , разделяющая числитель и знаменатель, называется дробной чертой. Иногда ее изображают в виде наклонной «/» или «∕». При этом, числитель записывается слева от черты, а знаменатель справа. Так, например, дробь «две третьих» запишется как 2/3. Для наглядности числитель обычно пишут в верхней части строки, а знаменатель - в нижней, то есть вместо 2/3 можно встретить: ⅔.

Чтобы рассчитать произведение дробей, умножьте сначала числитель одной дроби на числитель другой. Запишите результат в числитель новой дроби . После этого перемножьте и знаменатели. Итоговое значение укажите в новой дроби . Например, 1/3 ? 1/5 = 1/15 (1 ? 1 = 1; 3 ? 5 = 15).

Чтобы поделить одну дробь на другую, умножьте сначала числитель первой на знаменатель второй. То же произведите и со второй дробью (делителем). Или перед выполнением всех действий сначала «переверните» делитель, если вам так удобнее: на месте числителя должен оказаться знаменатель. После этого умножьте знаменатель делимого на новый знаменатель делителя и перемножьте числители. Например, 1/3: 1/5 = 5/3 = 1 2/3 (1 ? 5 = 5; 3 ? 1 = 3).

Источники:

  • Основные задачи на дроби

Дробные числа позволяют выражать в разном виде точное значение величины. С дробями можно выполнять те же математические операции, что и с целыми числами: вычитание, сложение, умножение и деление. Чтобы научиться решать дроби , надо помнить о некоторых их особенностях. Они зависят от вида дроби , наличия целой части, общего знаменателя. Некоторые арифметические действия после выполнения требуют сокращения дробной части результата.

Вам понадобится

  • - калькулятор

Инструкция

Внимательно посмотрите на числа. Если среди дробей есть десятичные и непрвильные, иногда удобнее вначале выполнить действия с десятичными, а затем перевести их в неправильный вид. Можете перевести дроби в такой вид изначально, записав значение после запятой в числитель и поставив 10 в знаменатель. При необходимости сократите дробь, разделив числа выше и ниже на один делитель. Дроби, в которых выделяется целая часть, приведите к неправильному виду, умножив её на знаменатель и прибавив к результату числитель. Данное значения станет новым числителем дроби . Чтобы выделить целую часть из первоначально неправильной дроби , надо поделить числитель на знаменатель. Целый результат записать от дроби . А остаток от деления станет новым числителем, знаменатель дроби при этом не меняется. Для дробей с целой частью возможно выполнение действий отдельно сначала для целой, а затем для дробной частей. Например, сумма 1 2/3 и 2 ¾ может быть вычислена :
- Переведение дробей в неправильный вид:
- 1 2/3 + 2 ¾ = 5/3 + 11/4 = 20/12 + 33/12 = 53/12 = 4 5/12;
- Суммирование отдельно целых и дробных частей слагаемых:
- 1 2/3 + 2 ¾ = (1+2) + (2/3 + ¾) = 3 +(8/12 + 9/12) = 3 + 17/12 = 3 + 1 5/12 = 4 5/12.

Перепишите их через разделитель «:» и продолжите обычное деление.

Для получения конечного результата полученную дробь сократите, разделив числитель и знаменатель на одно целое число, наибольшее возможное в данном случае. При этом выше и ниже черты должны быть целые числа.

Обратите внимание

Не выполняйте арифметические действия с дробями, знаменатели которых отличаются. Подберите такое число, чтобы при умножении на него числителя и знаменателя каждой дроби в результате знаменатели обеих дробей были равны.

Полезный совет

При записи дробных чисел делимое пишется над чертой. Эта величина обозначается как числитель дроби. Под чертой записывается делитель, или знаменатель, дроби. Например, полтора килограмма риса в виде дроби запишется следующим образом: 1 ½ кг риса. Если знаменатель дроби равен 10, такую дробь называют десятичной. При этом числитель (делимое) пишется справа от целой части через запятую: 1,5 кг риса. Для удобства вычислений такую дробь всегда можно записать в неправильном виде: 1 2/10 кг картофеля. Для упрощения можно сократить значения числителя и знаменателя, поделив их на одно целое число. В данном примере возможно деление на 2. В результате получится 1 1/5 кг картофеля. Удостоверьтесь, что числа, с которыми вы собираетесь выполнять арифметические действия, представлены в одном виде.

Говоря о математике, нельзя не вспомнить дроби. Их изучению уделяют немало внимания и времени. Вспомните, сколько примеров вам приходилось решать, чтобы усвоить те или иные правила работы с дробями, как вы запоминали и применяли основное свойство дроби. Сколько нервов было потрачено для нахождения общего знаменателя, особенно если в примерах было больше двух слагаемых!

Давайте же вспомним, что это такое, и немного освежим в памяти основные сведения и правила работы с дробями.

Определение дробей

Начнем, пожалуй, с самого главного - определения. Дробь - это число, которое состоит из одной или более частей единицы. Дробное число записывается в виде двух чисел, разделенных горизонтальной либо же косой чертой. При этом верхнее (или первое) называется числителем, а нижнее (второе) - знаменателем.

Стоит отметить, что знаменатель показывает, на сколько частей разделена единица, а числитель - количество взятых долей или частей. Зачастую дроби, если они правильные, меньше единицы.

Теперь давайте рассмотрим свойства данных чисел и основные правила, которые используются при работе с ними. Но прежде чем мы будем разбирать такое понятие, как "основное свойство рациональной дроби", поговорим о видах дробей и их особенностях.

Какими бывают дроби

Можно выделить несколько видов таких чисел. В первую очередь это обыкновенные и десятичные. Первые представляют собой уже указанный нами вид записи с помощью горизонтальной либо косой черты. Второй вид дробей обозначается с помощью так называемой позиционной записи, когда сначала идет указание целой части числа, а затем, после запятой, указывается дробная часть.

Тут стоит отметить, что в математике одинаково используются как десятичные, так и обыкновенные дроби. Основное свойство дроби при этом действительно только для второго варианта. Кроме того, в обыкновенных дробях выделяют правильные и неправильные числа. У первых числитель всегда меньше знаменателя. Отметим также, что такая дробь меньше единицы. В неправильной дроби наоборот - числитель больше знаменателя, а сама она больше единицы. При этом из нее можно выделить целое число. В данной статье мы рассмотрим только обыкновенные дроби.

Свойства дробей

Любое явление, химическое, физическое или математическое, имеет свои характеристики и свойства. Не стали исключением и дробные числа. Они имеют одну немаловажную особенность, с помощью которой над ними можно проводить те или иные операции. Каково основное свойство дроби? Правило гласит, что если ее числитель и знаменатель умножить либо же разделить на одно и то же рациональное число, мы получим новую дробь, величина которой будет равна величине исходной. То есть, умножив две части дробного числа 3/6 на 2, мы получим новую дробь 6/12, при этом они будут равны.

Исходя из этого свойства, можно сокращать дроби, а также подбирать общие знаменатели для той или иной пары чисел.

Операции

Несмотря на то что дроби кажутся нам более сложными, по сравнению с с ними также можно выполнять основные математические операции, такие как сложение и вычитание, умножение и деление. Кроме того, есть и такое специфическое действие, как сокращение дробей. Естественно, каждое из этих действий совершается согласно определенным правилам. Знание этих законов облегчает работу с дробями, делает ее более легкой и интересной. Именно поэтому дальше мы с вами рассмотрим основные правила и алгоритм действий при работе с такими числами.

Но прежде чем говорить о таких математических операциях, как сложение и вычитание, разберем такую операцию, как приведение к общему знаменателю. Вот тут нам как раз таки и пригодится знание того, какое основное свойство дроби существует.

Общий знаменатель

Для того чтобы число привести к общему знаменателю, сначала понадобится найти наименьшее общее кратное для двух знаменателей. То есть наименьшее число, которое одновременно делится на оба знаменателя без остатка. Наиболее простой способ подобрать НОК (наименьшее общее кратное) - выписать в строчку для одного знаменателя, затем для второго и найти среди них совпадающее число. В том случае, если НОК не найдено, то есть у данных чисел нет общего кратного числа, следует перемножить их, а полученное значение считать за НОК.

Итак, мы нашли НОК, теперь следует найти дополнительный множитель. Для этого нужно поочередно разделить НОК на знаменатели дробей и записать над каждой из них полученное число. Далее следует умножить числитель и знаменатель на полученный дополнительный множитель и записать результаты в виде новой дроби. Если вы сомневаетесь в том, что полученное вами число равняется прежнему, вспомните основное свойство дроби.

Сложение

Теперь перейдем непосредственно к математическим операциям над дробными числами. Начнем с самой простой. Есть несколько вариантов сложения дробей. В первом случае оба числа имеют одинаковый знаменатель. В таком случае остается лишь сложить числители между собой. Но знаменатель не меняется. Например, 1/5 + 3/5 = 4/5.

В случае если у дробей разные знаменатели, следует привести их к общему и лишь затем выполнять сложение. Как это сделать, мы с вами разобрали чуть выше. В данной ситуации вам как раз и пригодится основное свойство дроби. Правило позволит привести числа к общему знаменателю. При этом значение никоим образом не изменится.

Как вариант, может случиться, что дробь является смешанной. Тогда следует сначала сложить между собой целые части, а затем уже дробные.

Умножение

Не требует никаких хитростей, и для того чтобы выполнить данное действие, необязательно знать основное свойство дроби. Достаточно сначала перемножить между собой числители и знаменатели. При этом произведение числителей станет новым числителем, а знаменателей - новым знаменателем. Как видите, ничего сложного.

Единственное, что от вас требуется, - знание таблицы умножения, а также внимательность. Кроме того, после получения результата следует обязательно проверить, можно ли сократить данное число или нет. О том, как сокращать дроби, мы расскажем немного позже.

Вычитание

Выполняя следует руководствоваться теми же правилами, что и при сложении. Так, в числах с одинаковым знаменателем достаточно от числителя уменьшаемого отнять числитель вычитаемого. В том случае, если у дробей разные знаменатели, следует привести их к общему и затем выполнить данную операцию. Как и в аналогичном случае со сложением, вам понадобится использовать основное свойство алгебраической дроби, а также навыки в нахождении НОК и общих делителей для дробей.

Деление

И последняя, наиболее интересная операция при работе с такими числами - деление. Она довольно простая и не вызывает особых трудностей даже у тех, кто плохо разбирается, как работать с дробями, в особенности выполнять операции сложения и вычитания. При делении действует такое правило, как умножение на обратную дробь. Основное свойство дроби, как и в случае с умножением, задействовано для данной операции не будет. Разберем подробнее.

При делении чисел делимое остается без изменений. Дробь-делитель превращается в обратную, то есть числитель со знаменателем меняются местами. После этого числа перемножаются между собой.

Сокращение

Итак, мы с вами уже разобрали определение и структуру дробей, их виды, правила операций над данными числами, выяснили основное свойство алгебраической дроби. Теперь поговорим о такой операции, как сокращение. Сокращением дроби называется процесс ее преобразования - деление числителя и знаменателя на одно и то же число. Таким образом, дробь сокращается, не меняя при этом своих свойств.

Обычно при совершении математической операции следует внимательно посмотреть на полученный в итоге результат и выяснить, возможно ли сократить полученную дробь или же нет. Помните, что в итоговый результат всегда записывается не требующее сокращения дробное число.

Другие операции

Напоследок отметим, что мы перечислили далеко не все операции над дробными числами, упомянув лишь самые известные и необходимые. Дроби также можно сравнять, преобразовать в десятичные и наоборот. Но в данной статье мы не стали рассматривать данные операции, так как в математике они осуществляются намного реже, чем те, что были приведены нами выше.

Выводы

Мы с вами поговорили о дробных числах и операциях с ними. Разобрали также основное свойство Но заметим, что все эти вопросы были рассмотрены нами вскользь. Мы привели лишь наиболее известные и употребляемые правила, дали наиболее важные, на наш взгляд, советы.

Данная статья призвана скорее освежить забытые вами сведения о дробях, нежели дать новую информацию и "забить" голову бесконечными правилами и формулами, которые, вероятнее всего, вам так и не пригодятся.

Надеемся, что материал, представленный в статье просто и лаконично, стал для вас полезным.

Часть единицы или несколько ее частей называют простой или обыкновенной дробью. Количество равных частей, на которые делится единица, называется знаменателем, а количество взятых частей - числителем. Дробь записывается в виде:

В данном случае а - числитель, b - знаменатель.

Если числитель меньше знаменателя, то дробь меньше 1 и называется правильной дробью. Если числитель больше знаменателя, то дробь больше 1, тогда дробь называется неправильной.

Если числитель и знаменатель дроби равны, то дробь равна.

1. Если числитель можно разделить на знаменатель, то эта дробь равна частному от деления:

В случае если деление выполняется с остатком, то эта неправильная дробь может быть представлена смешанным числом, например:

Тогда 9 - неполное частное (целая часть смешанного числа),
1 - остаток (числитель дробной части),
5 - знаменатель.

Для того чтобы обратить смешанное число в дробь, необходимо умножить целую часть смешанного числа на знаменатель и прибавить числитель дробной части.

Полученный результат будет числителем обыкновенной дроби, а знаменатель останется прежним.

Действия с дробями

Расширение дроби. Значение дроби не меняется, если умножить ее числитель и знаменатель на одно и то же число, отличное от нуля.
Например :

Сокращение дроби. Значение дроби не меняется, если разделить её числитель и знаменатель на одно и то же число, отличное от нуля.
Например :

Сравнение дробей. Из двух дробей с одинаковыми числителями та больше, знаменатель которой меньше:

Из двух дробей с одинаковыми знаменателями та больше, числитель которой больше:

Для сравнения дробей, у которых числители и знаменатели различны, необходимо расширить их, то есть привести к общему знаменателю. Рассмотрим, например, следующие дроби:

Сложение и вычитание дробей. Если знаменатели дробей одинаковы, то для того чтобы сложить дроби, необходимо сложить их числители, а для того чтобы вычесть дроби, надо вычесть их числители. Полученная сумма или разность будет числителем результата, а знаменатель останется прежним. Если знаменатели дробей различны, необходимо сначала привести дроби к общему знаменателю. При сложении смешанных чисел их целые и дробные части складываются отдельно. При вычитании смешанных чисел сначала необходимо преобразовать их к виду неправильных дробей, затем вычесть из одной другую, а после этого вновь привести результат, если требуется к виду смешанного числа.

Умножение дробей . Для перемножения дробей необходимо перемножить отдельно их числители и знаменатели и разделить первое произведение на второе.

Деление дробей . Для того чтобы разделить некоторое число на дробь, необходимо умножить это число на обратную дробь.

Десятичная дробь - это результат деления единицы на десять, сто, тысячу и т.д. частей. Сначала пишется целая часть числа, затем справа ставится десятичная точка. Первая цифра после десятичной точки означает число десятых, вторая - число сотых, третья - число тысячных и т. д. Цифры, расположенные после десятичной точки, называются десятичными знаками.

Например:

Свойства десятичных дробей

Свойства:

  • Десятичная дробь не меняется, если справа добавить нули: 4,5 = 4,5000.
  • Десятичная дробь не меняется, если удалить нули, расположенные в конце десятичной дроби: 0,0560000 = 0,056.
  • Десятичная дробь возрастает в 10, 100, 1000 и т.д. раз, если перенести десятичную точку на одну, две, три и т.д. позиции вправо: 4,5 45 (дробь возросла в 10 раз).
  • Десятичная дробь уменьшается в 10, 100, 1000 и т.д. раз, если перенести десятичную точку на одну, две, три и т.д. позиции влево: 4,5 0,45 (дробь уменьшилась в 10 раз).

Периодическая десятичная дробь содержит бесконечно повторяющуюся группу цифр, называемую периодом: 0,321321321321…=0,(321)

Действия с десятичными дробями

Сложение и вычитание десятичных дробей выполняются так же, как и сложение и вычитание целых чисел, необходимо только записать соответствующие десятичные знаки один под другим.
Например:

Умножение десятичных дробей проводится в несколько этапов:

  • Перемножаем десятичные дроби как целые числа, не принимая во внимание десятичную точку.
  • Применяется правило: количество десятичных знаков в произведении равно сумме десятичных знаков во всех сомножителях.

Например :

Сумма чисел десятичных знаков в сомножителях равна: 2+1=3. Теперь необходимо с конца получившегося числа отсчитать 3 знака и поставить десятичную точку: 0,675.

Деление десятичных дробей. Деление десятичной дроби на целое число: если делимое меньше делителя, тогда нужно записать ноль в целой части частного и поставить после него десятичную точку. Затем, не принимая во внимание десятичную точку делимого, присоединить к его целой части следующую цифру дробной части и опять сравнить полученную целую часть делимого с делителем. Если новое число опять меньше делителя, надо повторить операцию. Этот процесс повторяется до тех пор, пока полученное делимое не станет больше делителя. После этого деление выполняется, как для целых чисел. Если делимое больше делителя или равно ему, сначала делим его целую часть, записываем результат деления в частном и ставим десятичную точку. После этого деление продолжается, как в случае целых чисел.

Деление одной десятичной дроби на другую: сначала переносятся десятичные точки в делимом и делителе на число десятичных знаков в делителе, то есть делаем делитель целым числом, и выполняются действия, описанные выше.

Для того чтобы обратить десятичную дробь в обыкновенную, необходимо в качестве числителя взять число, стоящее после десятичной точки, а в качестве знаменателя взять k-ую степень десяти (k - количество десятичных знаков). Отличная от нуля целая часть сохраняется в обыкновенной дроби; нулевая целая часть опускается.
Например:

Для того чтобы обратить обыкновенную дробь в десятичную, надо разделить числитель на знаменатель в соответствии с правилами деления.

Процент - это сотая часть единицы, например: 5% означает 0,05. Отношение - это частное от деления одного числа на другое. Пропорция - это равенство двух отношений.

Например:

Основное свойство пропорции: произведение крайних членов пропорции равно произведению ее средних членов, то есть 5х30=6х25. Две взаимно зависимых величины называются пропорциональными, если отношение их величин сохраняется неизменным (коэффициент пропорциональности).

Таким образом, выявлены следующие арифметические действия.
Например:

Множество рациональных чисел включает в себя положительные и отрицательные числа (целые и дробные) и ноль. Более точное определение рациональных чисел, принятое в математике, следующее: число называется рациональным, если оно может быть представлено в виде обыкновенной несократимой дроби вида:, где a и b целые числа.

Для отрицательного числа абсолютная величина (модуль) - это положительное число, получаемое от перемены его знака с «-» на «+»; для положительного числа и нуля - само это число. Для обозначения модуля числа используются две прямые черты, внутри которых записывается это число, например: |–5|=5.

Свойства абсолютной величины

Пусть дан модуль числа , для которого справедливы свойства:

Одночлен - это произведение двух или нескольких сомножителей, каждый из которых либо число, либо буква, либо степень буквы: 3 х a х b. Коэффициентом чаще всего называют лишь числовой множитель. Одночлены называются подобными, если они одинаковы или отличаются лишь коэффициентами. Степень одночлена - это сумма показателей степеней всех его букв. Если среди суммы одночленов есть подобные, то сумма может быть приведена к более простому виду: 3 х a х b + 6 х a = 3 х a х (b + 2). Эта операция называется приведением подобных членов или вынесением за скобки.

Многочлен - это алгебраическая сумма одночленов. Степень многочлена есть наибольшая из степеней одночленов, входящих в данный многочлен.

Существуют следующие формулы сокращенного умножения:

Методы разложения на множители:

Алгебраическая дробь - это выражение вида , где A и B могут быть числом, одночленом, многочленом.

Если два выражения (числовые и буквенные) соединены знаком «=», то говорят, что они образуют равенство. Любое верное равенство, справедливое при всех допустимых числовых значениях входящих в него букв, называется тождеством.

Уравнение - это буквенное равенство, которое справедливо при определенных значениях входящих в него букв. Эти буквы называются неизвестными (переменными), а их значения, при которых данное уравнение обращается в тождество, - корнями уравнения.

Решить уравнение - значит найти все его корни. Два или несколько уравнений называются равносильными, если они имеют одни и те же корни.

  • ноль являлся корнем уравнения;
  • уравнение имело только конечное число корней.

Основные типы алгебраических уравнений:

У линейного уравнения ax + b = 0:

  • если a х 0, имеется единственный корень x = -b/a;
  • если a = 0, b ≠ 0, нет корней;
  • если a = 0, b = 0, корнем является любое действительное число.

Уравнение xn = a, n N:

  • если n - нечетное число, имеет при любом а действительный корень, равный a/n;
  • если n - четное число, то при a 0, то имеет два корня.

Основные тождественные преобразования: замена одного выражения другим, тождественно равным ему; перенос членов уравнения из одной стороны в другую с обратными знаками; умножение или деление обеих частей уравнения на одно и то же выражение (число), отличное от нуля.

Линейным уравнением с одним неизвестным называется уравнение вида: ax+b=0, где a и b - известные числа, а x - неизвестная величина.

Системы двух линейных уравнений с двумя неизвестными имеют вид:

Где a, b, c, d, e, f - заданные числа; x, y - неизвестные.

Числа a, b, c, d - коэффициенты при неизвестных; e, f - свободные члены. Решение этой системы уравнений может быть найдено двумя основными методами: метод подстановки: из одного уравнения выражаем одно из неизвестных через коэффициенты и другое неизвестное, а затем подставляем во второе уравнение, решая последнее уравнение, находим сначала одно неизвестное, затем подставляем найденное значение в первое уравнение и находим второе неизвестное; метод сложения или вычитания одного уравнения из другого.

Операции с корнями:

Арифметическим корнем n-й степени из неотрицательного чис-ла a называется неотрицательное число, n-я степень которого рав-на a. Алгебраическим корнем n-й степени из данного числа называ-ется множество всех корней из этого числа.

Иррациональные числа в отличие от рациональных не могут быть представлены в виде обыкновенной несократимой дроби вида m/n, где m и n - целые числа. Это числа нового типа, которые могут быть вычислены с любой точностью, но не могут быть заменены рациональным числом. Они могут появиться как результат геометрических измерений, например: отношение длины диагонали квадрата к длине его стороны равно.

Квадратное уравнение есть алгебраическое уравнение второй степени ax2+bx+c=0, где a, b, c - заданные числовые или буквенные коэффициенты, x - неизвестное. Если разделить все члены этого уравнения на а, в результате получим x2+px+q=0 - приведенное уравнение p=b/a, q=c/a. Его корни находятся по формуле:

Если b2-4ac>0, тогда имеются два различных корня, b2- 4ac=0, тогда имеются два равных корня; b2-4ac Уравнения, содержащие модули

Основные типы уравнений, содержащие модули:
1) |f(x)| = |g(x)|;
2) |f(x)| = g(x);
3) f1(x)|g1(x)| + f2(x)|g2(x)| + … + fn(x)|gn(x)| =0, n N, где f(x), g(x), fk(x), gk(x) - заданные функции.