Ремонт Стены Уход

Магнитные линии прямого проводника с током. Магнитное поле прямого проводника

Магнитное поле проводника с током. При прохождении тока по прямолинейному проводнику вокруг него возникает магнитное поле (рис. 38). Магнитные силовые линии этого поля располагаются по концентрическим окружностям, в центре которых находится проводник с током.
Направление магнитного поля вокруг проводника с током всегда находится в строгом соответствии с направлением тока, проходящего по проводнику. Направление магнитных силовых линий можно определить по правилу буравчика. Его формулируют следующим образом. Если поступательное движение буравчика 1 (рис. 39, а) совместить с направлением тока 2 в проводнике 3, то вращение его рукоятки укажет направление силовых линий 4 магнитного поля вокруг проводника. Например, если ток проходит по проводнику в направлении от нас за плоскость листа книги (рис. 39, б), то магнитное поле, возникающее вокруг этого проводника, направлено по часовой стрелке. Если ток по проводнику проходит по направлению от плоскости листа книги к нам, то магнитное поле вокруг проводника направлено против часовой стрелки. Чем больше ток, проходящий по проводнику, тем сильнее возникающее вокруг него магнитное поле. При изменении направления тока магнитное поле также изменяет свое направление.
По мере удаления от проводника магнитные силовые линии располагаются реже. Следовательно, индукция магнитного поля и его напряженность уменьшаются. Напряженность магнитного поля в пространстве, окружающем проводник,

H = I/(2?r) (44)

Максимальная напряженность Н max имеет место на внешней поверхности проводника 1 (рис. 40). Внутри проводника также

возникает магнитное поле, но напряженность его линейно уменьшается по направлению от внешней поверхности к оси (кривая 2). Магнитная индукция поля вокруг и внутри проводника изменяется таким же образом, как и напряженность.

Способы усиления магнитных полей. Для получения сильных магнитных полей при небольших токах обычно увеличивают число проводников с током и выполняют их в виде ряда витков; такое устройство называют обмоткой, или катушкой.
При проводнике, согнутом в виде витка (рис. 41, а), магнитные поля, образованные всеми участками этого проводника, будут внутри витка иметь одинаковое направление. Поэтому интенсивность магнитного поля внутри витка будет больше, чем вокруг прямолинейного проводника. При объединении витков в катушку магнитные поля, созданные отдельными витками, складываются (рис. 41, б) и их силовые линии соединяются в общий магнитный поток. При этом концентрация силовых линий внутри катушки возрастает, т. е. магнитное поле внутри нее усиливается. Чем больше ток, проходящий через катушку, и чем больше в ней витков, тем сильнее создаваемое катушкой магнитное поле. Магнитное поле снаружи катушки также складывается из магнитных полей отдельных витков, однако магнитные силовые линии располагаются не так густо, вследствие чего интенсивность магнитного поля там не столь велика, как внутри катушки. Магнитное поле катушки, обтекаемой током, имеет такую же форму, как и поле прямолинейного постоянного магнита (см. рис. 35, а): силовые магнитные линии выходят из одного конца катушки и входят В другой ее конец. Поэтому катушка, обтекаемая током, представляет собой искусственный электрический магнит. Обычно для усиления магнитного поля внутрь катушки вставляют стальной сердечник; такое устройство называется электромагнитом.
Электромагниты нашли чрезвычайно широкое применение в технике. Они создают магнитное поле, необходимое для работы электрических машин, а также электродинамические усилия, требуемые. Для работы различных электроизмерительных приборов и электрических аппаратов.
Электромагниты могут иметь разомкнутый или замкнутый магнитопровод (рис. 42). Полярность конца катушки электромагнита можно определить, как и полярность постоянного магнита, при помощи магнитной стрелки. К северному полюсу она поворачивается южным концом. Для определения направления магнитного поля, создаваемого витком или катушкой, можно использовать также правило буравчика. Если совместить направление вращения рукоятки с направлением тока в витке или катушке, то поступательное движение буравчика укажет направление магнитного поля. Полярность электромагнита можно определить и с помощью правой руки. Для этого руку надо положить ладонью на катушку (рис. 43) и совместить четыре пальца с направлением в ней тока, при этом отогнутый большой палец покажет направление магнитного поля.

Вычислим индукцию магнитного поля, создаваемого прямолинейным проводником с током в произвольной точке М . Мысленно разобьем проводник на элементарно малые участки длиною . Согласно правилу буравчика в точке М векторы от всех элементов тока имеют одинаковое направление - за плоскость рисунка. Поэтому сложение векторов можно заменить сложением их модулей , причем

Для интегрирования нужно переменные , , и выразить через одну какую-либо из них. В качестве переменной интегрирования выберем угол . ВС - есть дуга окружности радиуса r с центром в точке , равная (см. рисунок). Выразим из прямоугольного треугольника АВС : . Подставив это выражение в (3) получим . Из треугольника АОМ определим , где - кратчайшее расстояние от точки поля до линии тока. Тогда

Интегрируя последнее выражение по всем элементам тока, что эквивалентно интегрированию от до , находим .

Таким образом, индукция магнитного поля, созданного прямолинейным током конечной длины будет равна

В дальнейшем, я введу понятие вектора напряженности магнитного поля , которое связано с индукцией магнитного поля соотношением , , где - магнитная проницаемость среды. Для вакуума , для воздуха . Тогда напряженность магнитного поля, созданного проводником конечной длины будет равна

Для прямолинейного проводника бесконечной длины углы и будут равны , , а выражение в скобках принимает значение . Следовательно, индукция и напряженность магнитного поля, созданного прямолинейным проводником с током бесконечной длины равны соответственно

Магнитное поле кругового тока

В качестве второго применения закона Био - Савара - Лапласа вычислим индукцию и напряженность магнитного поля на оси кругового тока. Обозначим радиус окружности проводника с током через , расстояние от центра кругового тока до исследуемой точки поля через h . От всех элементов тока образуется конус векторов , и легко сообразить, что результирующий вектор в точке будет направлен горизонтально вдоль оси . Для нахождения модуля вектора достаточно сложить проекции векторов на ось . Каждая такая проекция имеет вид



где учтено, что угол - между векторами и равен , поэтому синус равен единице. Проинтегрируем это выражение по всем

Интеграл - есть длина окружности проводника с током, тогда

Учитывая, что , запишем

и, применяя теорему Пифагора, получим,

а для напряженности магнитного поля

Магнитная индукция и напряженность магнитного поля в центре кругового тока, ( , ) , соответственно равны

Взаимодействие параллельных проводников с током.

Единица силы тока.

Найдем силу на единицу длины, с которой взаимодействуют в вакууме два параллельных бесконечно длинных провода с токами и , если расстояние между проводами равно . Каждый элемент тока находится в магнитном поле тока , а именно в поле . Угол между каждым элементом тока и вектором поля равен 90°.

Тогда согласно закону Ампера, на участок проводника с током действует сила

а на единицу длины проводника эта сила будет равна

Для силы действующей на единицу длины проводника с током , получается, то же выражение. И наконец. Определяя направление вектора при помощи правила правого винта, и направление силы Ампера при помощи правила левой руки убедимся, что токи одинаково направленные, притягиваются, а противоположно направленные отталкиваются.

Если по проводникам, находящимся на расстоянии протекают одинаковые токи , то на каждый метр длины проводников действуют силы равные по или, учитывая что , получим, а густота линий была бы пропорциональна модулю вектора, или в другой записи .

Это означает, что магнитное поле не имеет источников (магнитных зарядов). Магнитное поле порождают не магнитные заряды (которых в природе нет), а электрические токи. Этот закон является фундаментальным: он справедлив не только для постоянных, но и для переменных магнитных полей.

Пусть вдоль осиOZ расположен бесконечно длинный проводник, по которому течёт ток с силой . А сила тока это что такое?
,
- заряд, который пересекает поверхностьS за время
. Система обладает осевой симметрией. Если мы введём цилиндрические координатыr ,  , z , то цилиндрическая симметрия означает, что
и, кроме того,
, при смещении вдоль осиOZ , мы видим то же самое. Таков источник. Магнитное поле должно быть таким, чтобы удовлетворялись эти условия
и
. Это означает вот что: силовые линии магнитного поля – окружности, лежащие в плоскости ортогональной проводнику. Это немедленно позволяет найти магнитное поле.

Пусть у нас это проводник.

Вот ортогональная плоскость,

вот окружность радиуса r ,

я возьму тут касательный вектор, вектор, направленный вдоль , касательный вектор к окружности.

Тогда,
,
где
.

В качестве замкнутого контура выбираем окружность радиуса r = const . Пишем тогда , сумма длин по всей окружности (а интеграл это ни что иное, как сумма) – это длина окружности., где – сила тока в проводнике. Справа стоит заряд, который пересекает поверхность за единицу времени. Отсюда мораль:
. Значит, прямой проводник создаёт магнитное поле с силовыми линиями в виде окружностей, охватывающих проводник, и эта величинаВ убывает как при удалении от проводника, ну, и стремится к бесконечности, если мы приближаемся к проводнику, когда контур уходит внутрь проводника.

Этот результат только для случая, когда контур охватывает ток. Понятно, что бесконечный проводник нереализуем. Длина проводника, – наблюдаемая величина, и никакие наблюдаемые величины не могут принимать бесконечных значений, не такой линейки, которая позволила бы измерить бесконечную длину. Это нереализуемая вещь, тогда какой толк в этой формуле? Толк простой. Для любого проводника, будет справедливо следующее: достаточно близко к проводнику силовые линии магнитного поля – вот такие замкнутые окружности, охватывающие проводник, и на расстоянии
(R – радиус кривизны проводника), будет справедлива эта формула.

Магнитное поле, создаваемое произвольным проводником с током.

Закон Био-Савара.

Пусть мы имеем произвольный проводник с током, и нас интересует магнитное поле, создаваемое куском этого проводника в данной точке. Как, кстати, в электростатике находили мы электрическое поле, создаваемое каким-то распределением заряда? Распределение разбивали на малые элементы и вычисляли в каждой точке поле от каждого элемента (по закону Кулона) и суммировали. Такая же программа и здесь. Структура магнитного поля сложнее, чем электростатическое, кстати, оно не потенциально, замкнутое магнитное поле нельзя представить как градиент скалярной функции, у него другая структура, но идея та же самая. Разбиваем проводник на малые элементы. Вот я взял маленький элемент
, положение этого элемента определяется радиус-вектором, а точка наблюдения задаётся радиус-вектором. Утверждается, что этот элемент проводника создаст в этой точке индукциюпо такому рецепту:
. Откуда берётся этот рецепт? Его нашли в своё время экспериментально, трудно мне, кстати, представить, как это можно было экспериментально найти такую достаточно сложную формулу с векторным произведением. На самом деле это следствие четвёртого уравнения Максвелла
. Тогда поле, создаваемое всем проводником:
, или, мы можем написать теперь интеграл:
. Понятно, что вычислять такой интеграл для произвольного проводника занятие не очень приятное, но в виде суммы это нормальная задача для компьютера.

Пример. Магнитное поле кругового витка с током.

Пусть в плоскостиYZ располагается проволочный виток радиуса R, по которому течёт ток силы . Нас интересует магнитное поле, которое создаёт ток. Силовые линии вблизи витка такие:

Общая картина силовых линий тоже просматривается (рис.7.10 ).




По идее, нас интересовало бы поле
, но в элементарных функциях указать поле этого витка нельзя. Найти можно только на оси симметрии. Мы ищем поле в точках (х ,0,0).

Направление вектора определяется векторным произведением
. Векторимеет две составляющие:
и. Когда мы начнём суммировать эти вектора, то все перпендикулярные составляющие в сумме дадут ноль.
. А теперь пишем:
,
=, а
.
, и, наконец 1) ,
.

Мы добыли такой результат:

А теперь, в качестве проверки, поле в центре витка равна:
.

Поле длинного соленоида.

Соленоидом называется катушка, на которую намотан проводник.

Магнитное поле от витков складывается, и не трудно догадаться, что структура силовых линий поля такая: они внутри идут густо, а дальше разреженно. То есть для длинного соленоида снаружи будем считать=0, а внутри соленоида=const . Внутри длинного соленоида, ну, в окрестности. Скажем, его середины, магнитное поле практически однородно, а вне соленоида это поле мало. Тогда мы можем найти это магнитное поле внутри следующим образом: вот я беру такой контур (рис.7.13 ), а теперь пишем:
1)


.

- это полный заряд. Эту поверхность протыкают витки

(полный заряд)=
(число витков, протыкающих эту поверхность).

Мы получим такое равенство из нашего закона:
, или

.

Поле на большом расстоянии от ограниченного распределения тока.

Магнитный момент

Имеется в виду, что в ограниченной области пространства текут токи, тогда есть простой рецепт для нахождения магнитного поля, которое создаёт это ограниченное распределение. Ну, кстати, под это понятие ограниченное пространство подпадает любой источник, поэтому тут никакого сужения нет.

Если характерный размер системы , то
. Напомню, что мы решали аналогичную проблему для электрического поля, создаваемого ограниченным распределением заряда, и там появилось понятие дипольного момента, и моментов более высокого порядка. Решать эту задачу я здесь не буду.

По аналогии (как делалось в электростатике) можно показать, что магнитное поле от ограниченного распределения на больших расстояниях подобно электрическому полю диполя. То есть структура этого поля такая:

Распределение характеризуется магнитным моментом .Магнитный момент
, где– плотность тока или, если учесть, что мы имеем дело с движущимися заряженными частицами, то вот эту формулу для сплошно среды мы можем выразить через заряды частиц таким образом:
. Что эта сумма выражает? Повторяю, распределение тока создаётся тем, что движутся эти заряженные частицы. Радиус-векторi -ой частицы векторно умножается на скорость i -ой частицы и всё это умножается на заряд этой i -ой частицы.

Такая конструкция, кстати, у нас в механике была. Если вместо заряда без множителя написать массу частицы, то, что это будет изображать? Момент импульса системы.

Если мы имеем частицы одного сорта (
, например, электроны), то тогда мы можем написать

. Значит, если ток создаётся частицами одного сорта, то магнитный момент связан просто с моментом импульса этой системы частиц.

Магнитное поле , создаваемое этим магнитным моментом равно:

(8.1 )

Магнитный момент витка с током

Пусть у нас имеется виток и по нему течёт ток силы. Вектор отличен от нуля в пределах витка. Возьмём элемент этого витка,
, гдеS – поперечное сечение витка, а – единичный касательный вектор. Тогда магнитный момент определён так:
. А что такое
? Это вектор, направленный вдоль вектора нормали к плоскости витка. А векторное произведение двух векторов – это удвоенная площадь треугольника, построенного на этих векторах. ЕслиdS – площадь треугольника, построенного на векторах и, то
. Тогда мы пишем магнитный момент равняется. Значит,

(магнитный момент витка с током)=(сила тока)(площадь витка)(нормаль к витку) 1) .

А теперь мы формулу (8.1 ) применим для витка с током и сопоставим с тем, что мы добыли в прошлый раз, просто для проверки формулы, поскольку формулу эту я слепил по аналогии.

Пусть мы имеем в начале координат виток произвольной формы, по которому течёт ток силы , тогда поле в точке на расстоянии х равно: (
). Для круглого витка
,
. На прошлой лекции мы находили магнитное поле круглого витка с током, при
эти формулы совпадают.

На больших расстояниях от любого распределения тока магнитное поле находится по формуле (8.1 ), а всё это распределение характеризуется одним вектором, который называется магнитный момент. Кстати, простейший источник магнитного поля это магнитный момент. Для электрического поля простейший источник это монополь, для электрического поля следующий по сложности это электрический диполь, а для магнитного поля всё начинается с этого диполя или магнитного момента. Это, ещё раз обращаю внимание, постольку, поскольку нет этих самых монополей. Был бы монополь, тогда было бы всё также как в электрическом поле. А так у нас простейший источник магнитного поля это магнитный момент, аналог электрического диполя. Наглядный пример магнитного момента – постоянный магнит. Постоянный магнит обладает магнитным моментом, и на большом расстоянии его поле имеет такую структуру:

Сила, действующая на проводник с током в магнитном поле

Мы видели, что на заряженную частицу действует сила, равная
. Ток в проводнике есть результат движения заряженных частиц тела, то есть равномерно размазанного заряда в пространстве нет, заряд локализован в каждой частице. Плотность тока
. Наi -ую частицу действует сила
.

Выберем элемент объёма
и просуммируем силы, действующие на все частицы этого элемента объёма
. Сила, действующая на все частицы в данном элементе объёма, определяется как плотность тока на магнитное поле и на величину элемента объёма. А теперь перепишем её в дифференциальном виде:
, отсюда
– этоплотность силы , сила, действующая на единицу объёма. Тогда мы получим общую формулу для силы:
.

Обычно ток течёт по линейным проводникам, редко мы сталкиваемся с случаями, когда ток размазан как-то по объёму. Хотя, между прочим, Земля имеет магнитное поле, а от чего это поле? Источник поля это магнитный момент, это означает, что Земля обладает магнитным моментом. А это означает, что тот рецепт для магнитного момента показывает, что должны быть какие-то токи внутри Земли, они по необходимости должны быть замкнутыми, потому что не может быть стационарного разомкнутого поля. Откуда эти токи, что их поддерживает? Я не специалист в земном магнетизме. Какое-то время назад определённой модели этих токов ещё не было. Они могли быть там когда-то индуцированы и ещё не успели там затухнуть. На самом деле, ток можно возбудить в проводнике, и потом он быстро сам кончается за счёт поглощения энергии, выделения тепла и прочего. Но, когда мы имеем дело с такими объёмами как Земля, то там время затухания этих токов, однажды каким-то механизмом возбуждённых, это время затухания может быть очень длительным и длиться геологические эпохи. Может быть, так оно и есть. Ну, скажем, мелкий объект типа Луны имеет очень слабое магнитное поле, это означает, что оно затухло там уже, скажем, магнитное поле Марса тоже значительно слабее поля Земли, потому что и марс меньше Земли. Это я к чему? Конечно, есть случаи, когда токи текут в объёмах, но то, что мы здесь на Земле имеем это обычно линейные проводники, поэтому эту формулу сейчас трансформируем применительно к линейному проводнику.

Пусть имеется линейный проводник, ток течёт с силой. Выберем элемент проводника , объём этого элементаdV ,
,
. Сила, действующая на элемент проводника
перпендикулярна плоскости треугольника, построенного на векторахи, то есть направлена перпендикулярно к проводнику, а полная сила находится суммированием. Вот, две формулы решают эту задачу.

Магнитный момент во внешнем поле

Магнитный момент сам создаёт поле, сейчас мы собственное его поле не рассматриваем, а нас интересует, как ведёт себя магнитный момент, помещённый во внешнее магнитное поле. На магнитный момент действует момент силы, равный
. Момент силы будет направлен перпендикулярно к доске, и этот момент будет стремиться развернуть магнитный момент вдоль силовой линии. Почему стрелка компаса показывает на северный полюс? Ей, конечно, нет дела до географического полюса Земли, стрелка компаса ориентируется вдоль силовой линии магнитного поля, которая, в силу случайных причин, кстати, направлена примерно по меридиану. За счёт чего? А на неё действует момент. Когда стрелка, магнитный момент, совпадающий по направлению с самой стрелкой, не совпадает с силовой линией, появляется момент, разворачивающий её вдоль этой линии. Откуда у стрелки компаса берётся магнитный момент, это мы ещё обсудим.

Кроме того, на магнитный момент действует сила, равная
. Если магнитный момент направлен вдоль, то сила втягивает магнитный момент в область с большей индукцией. Эти формулы похожи на то, как действует электрическое поле на дипольный момент, там тоже дипольный момент ориентируется вдоль поля и втягивается в область с большей напряжённостью. Теперь мы можем рассмотреть вопрос о магнитном поле в веществе.

Магнитное поле в веществе

Атомы могут обладать магнитными моментами. Магнитные моменты атомов связаны с моментом импульса электронов. Уже была получена формула
, где– момент импульса частицы создающей ток. В атоме мы имеем положительное ядро и электроне , вращающийся по орбите, на самом деле, в своё время мы увидим, что эта картина не имеет отношения к реальности, так нельзя представлять электрон, который вращается, но остаётся то, что электрон в атоме обладает моментом импульса, и этому моменту импульса будет отвечать такой магнитный момент:
. Наглядно, заряд, вращающийся по окружности, эквивалентен круговому току, то есть это элементарный виток с током. Момент импульса электрона в атоме квантуется, то есть может принимать только определённые значения, вот по такому рецепту:
,
, где вот эта величина– это постоянная Планка. Момент импульса электрона в атоме может принимать лишь определённые значения, мы сейчас не будем обсуждать, как это получается. Ну, и вследствие этого магнитный момент атома может принимать определённые значения. Эти детали нас сейчас не волнуют, но, по крайней мере, будем представлять, что атом может обладать определённым магнитным моментом, есть атомы, у которых нет магнитного момента. Тогда вещество, помещённое во внешнее поле намагничивается, а это означает, что оно приобретает определённый магнитный момент вследствие того, что магнитные моменты атомов ориентируются преимущественно вдоль поля.

Элемент объёма dV приобретает магнитный момент
, при чём векторимеет смысл плотности магнитного момента и называется вектором намагничивания. Имеется класс веществ, называемыхпарамагнетики , для которых
, намагничивается так, что магнитный момент совпадает с направлением магнитного поля. Имеютсядиамагнетики , которые намагничиваются, так сказать, «против шерсти», то есть магнитный момент антипараллелен вектору , значит,
. Это более тонкий термин. То, что векторпараллелен векторупонятно, магнитный момент атома ориентируется вдоль магнитного поля. Диамагнетизм связан с другим: если атом не обладает магнитным моментом, то во внешнем магнитном поле он приобретает магнитный момент, при чём магнитный момент антипараллелен. Этот очень тонкий эффект связан с тем, что магнитное поле влияет на плоскости орбит электронов, то есть оно влияет на поведение момента импульса. Парамагнетик втягивается в магнитное поле, диамагнетик выталкивается. Вот, чтобы это не было беспредметно, медь – это диамагнетик, и алюминий – парамагнетик, если взять магнит то алюминиевая лепёшка будет притягиваться магнитом, а тогда медная будет отталкиваться.

Понятно, что результирующее поле, когда вещество внесено в магнитное поле, это есть сумма внешнего поля и поля, создаваемого за счёт магнитного момента вещества. Теперь обратимся к уравнению
, или в дифференциальной форме
. Теперь такое утверждение: намагничивание вещества эквивалентно наведению в нём тока с плотностью
. Тогда это уравнение мы напишем в виде
.

Проверим размерность: М – это магнитный момент в единице объёма
, размерность
. Когда вы пишете какую-нибудь формулу, то размерность всегда полезно проверять, особенно если формула эта собственной выводки, то есть вы её не срисовали, не запомнили, а получили.

Намагниченность характеризуется вектором , он так и называется вектор намагниченности, это плотность магнитного момента или магнитный момент в единицу времени. Я говорил, что намагниченность эквивалентна появлению тока
, так называемого молекулярного тока, и это уравнение эквивалентно такому:
, то есть мы можем считать, что нет намагниченности, а есть такие токи. Зададимся таким уравнением:
,- это настоящие токи, связанные с конкретными носителями зарядов, аэто токи, связанные с намагниченностью. Электрон в атоме это круговой ток, возьмём область внутри, внутри образца все эти токи уничтожаются, но наличие таких круговых токов эквивалентно одному общему току, который обтекает этот проводник по поверхности, отсюда и такая формула. Перепишем это уравнение в таком виде:
,
. Этоттоже отправим влево и обозначим
, векторназываетсянапряжённостью магнитного поля , тогда уравнение приобретёт вид
. (циркуляция напряжённости магнитного поля по замкнутому контуру) = (сила тока через поверхность этого контура).

Ну, и, наконец, последнее. Мы имеем такую формулу:
. Для многих сред намагниченность зависит от напряжённости поля,
, гдемагнитная восприимчивость , это коэффициент, характеризующий склонность вещества к намагничиванию. Тогда эта формула перепишется в виде
,
магнитная проницаемость , и мы получаем такую формулу:
.

Если
, то это парамагнетики,
- это диамагнетики, ну, и, наконец, имеются вещества, для которых этопринимает большие значения (порядка 10 3),
- это ферромагнетики (железо, кобальт и никель). Ферромагнетики замечательны тем. Что они не только намагничиваются в магнитном поле, а им свойственно остаточное намагничивание, если он уже однажды был намагничен, то, если убрать внешнее поле, то он останется намагниченным в отличии от диа- и парамагнетиков. Постоянный магнит – это и есть ферромагнетик, который без внешнего поля намагничен сам по себе. Кстати, имеются аналоги этого дела в электричестве: имеются диэлектрики, которые поляризованы сами по себе без всякого внешнего поля. При наличии вещества наше фундаментальное уравнение приобретает такой вид:

,

,

.

Авот ещёпример ферромагнетика, бытовой пример магнитного поля в средах, во-первых, постоянный магнит, ну, и более тонкая вещь – магнитофонная лента. Каков принцип записи на ленту? Магнитофонная лента - это тонкая лента, покрытая слоем ферромагнетика, записывающая головка - это катушка с сердечником, по которой течёт переменный ток, в зазоре создаётся переменное магнитное поле, ток отслеживает звуковой сигнал, колебания с определённой частотой. Соответственно, в контуре магнита имеется переменное магнитное поле, которое меняется вместе с этим самым током. Ферромагнетик намагничивается переменным током. Когда эта лента протягивается по устройству такого типа, переменное магнитное поле создаёт переменную э.д.с. и воспроизводится опять электрический сигнал. Это ферромагнетики на бытовом уровне.

Поднести магнитную стрелку, то она будет стремиться стать перпендикулярно плоскости, проходящей через ось проводника и центр вращения стрелки. Это указывает на то, что на стрелку действуют особые силы, которые называются магнитными силами . Кроме действия на магнитную стрелку, магнитное поле оказывает влияние на движущиеся заряженные частицы и на проводники с током, находящиеся в магнитном поле. В проводниках, движущихся в магнитном поле, или в неподвижных проводниках, находящихся в переменном магнитном поле, возникает индуктивная (э. д. с.).

Магнитное поле

В соответствии с вышесказанным мы можем дать следующее определение магнитного поля.

Магнитным полем называется одна из двух сторон электромагнитного поля, возбуждаемая электрическими зарядами движущихся частиц и изменением электрического поля и характеризующаяся силовым воздействием на движущиеся зараженные частицы, а стало быть, и на электрические токи.

Если продеть через картон толстый проводник и пропустить по нему , то стальные опилки, насыпанные на картон, расположатся вокруг проводника по концентрическим окружностям, представляющим собой в данном случае так называемые магнитные индукционные линии (рисунок 1). Мы можем передвигать картон вверх или вниз по проводнику, но расположение опилок не изменится. Следовательно, магнитное поле возникает вокруг проводника по всей его длине.

Если на картон поставить маленькие магнитные стрелки, то, меняя направление тока в проводнике, можно увидеть, что магнитные стрелки будут поворачиваться (рисунок 2). Это показывает, что направление магнитных индукционных линий меняется с изменением направления тока в проводнике.

Магнитные индукционные линии вокруг проводника с током обладают следующими свойствами: 1) магнитные индукционные линии прямолинейного проводника имеют форму концентрических окружностей; 2) чем ближе к проводнику, тем гуще располагаются магнитные индукционные линии; 3) магнитная индукция (интенсивность поля) зависит от величины тока в проводнике; 4) направление магнитных индукционных линий зависит от направления тока в проводнике.

Чтобы показать направление тока в проводнике, изображенном в разрезе, принято условное обозначение, которым мы в дальнейшем будем пользоваться. Если мысленно поместить в проводнике стрелку по направлению тока (рисунок 3), то в проводнике, ток в котором направлен от нас, увидим хвост оперения стрелы (крестик); если же ток направлен к нам, увидим острие стрелы (точку).

Рисунок 3. Условное обозначение направления тока в проводниках

Правило буравчика позволяет определить направление магнитных индукционных линий вокруг проводника с током. Если буравчик (штопор) с правой резьбой будет двигаться поступательно по направлению тока, то направление вращения ручки будет совпадать с направлением магнитных индукционных линий вокруг проводника (рисунок 4).

Магнитная стрелка, внесенная в магнитное поле проводника с током, располагается вдоль магнитных индукционных линий. Поэтому для определения ее расположения можно также воспользоваться "правилом буравчика" (рисунок 5). Магнитное поле есть одно из важнейших проявлений электрического тока и не может быть получено независимо и отдельно от тока.

Рисунок 4. Определение направления магнитных индукционных линий вокруг проводника с током по "правилу буравчика" Рисунок 5. Определение направления отклонений магнитной стрелки, поднесенной к проводнику с током, по "правилу буравчика"

Магнитное поле характеризуется вектором магнитной индукции, который имеет, следовательно, определенную величину и определенное направление в пространстве.

Рисунок 6. К закону Био и Савара

Количественное выражение для магнитной индукции в результате обобщения опытных данных установлено Био и Саваром (рисунок 6). Измеряя по отклонению магнитной стрелки магнитные поля электрических токов различной величины и формы, оба ученых пришли к выводу, что всякий элемент тока создает на некотором расстоянии от себя магнитное поле, магнитная индукция которого ΔB прямо пропорциональна длине Δl этого элемента, величине протекающего тока I , синусу угла α между направлением тока и радиусом-вектором, соединяющим интересующую нас точку поля с данным элементом тока, и обратно пропорциональна квадрату длины этого радиус-вектора r :

где K – коэффициент, зависящий от магнитных свойств среды и от выбранной системы единиц.

В абсолютной практической рационализованной системе единиц МКСА

где µ 0 – магнитная проницаемость вакуума или магнитная постоянная в системе МКСА:

µ 0 = 4 × π × 10 -7 (генри/метр);

генри (гн ) – единица индуктивности; 1 гн = 1 ом × сек .

µ – относительная магнитная проницаемость – безразмерный коэффициент, показывающий, во сколько раз магнитная проницаемость данного материала больше магнитной проницаемости вакуума.

Размерность магнитной индукции можно найти по формуле

Вольт-секунда иначе называется вебером (вб ):

На практике встречается более мелкая единица магнитной индукции – гаусс (гс ):

Закон Био Савара позволяет вычислить магнитную индукцию бесконечно длинного прямолинейного проводника:

где а – расстояние от проводника до точки, где определяется магнитная индукция.

Напряженность магнитного поля

Отношение магнитной индукции к произведению магнитных проницаемостей µ × µ 0 называется напряженностью магнитного поля и обозначается буквой H :

B = H × µ × µ 0 .

Последнее уравнение связывает две магнитные величины: индукцию и напряженность магнитного поля.

Найдем размерность H :

Иногда пользуются другой единицей измерения напряженности магнитного поля – эрстедом (эр ):

1 эр = 79,6 а /м ≈ 80 а /м ≈ 0,8 а /см .

Напряженность магнитного поля H , как и магнитная индукция B , является векторной величиной.

Линия, касательная к каждой точке которой совпадает с направлением вектора магнитной индукции, называется линией магнитной индукции или магнитной индукционной линией .

Магнитный поток

Произведение магнитной индукции на величину площадки, перпендикулярной направлению поля (вектору магнитной индукции), называется потоком вектора магнитной индукции или просто магнитным потоком и обозначается буквой Ф:

Ф = B × S .

Размерность магнитного потока:

то есть магнитный поток измеряется в вольт-секундах или веберах.

Более мелкой единицей магнитного потока является максвелл (мкс ):

1 вб = 108 мкс .
1 мкс = 1 гс × 1 см 2.

Видео 1. Гипотеза Ампера

Видео 2. Магнетизм и электромагнетизм

Темы кодификатора ЕГЭ : взаимодействие магнитов, магнитное поле проводника с током.

Магнитные свойства вещества известны людям давно. Магниты получили своё название от античного города Магнесия: в его окрестностях был распространён минерал (названный впоследствии магнитным железняком или магнетитом), куски которого притягивали железные предметы.

Взаимодействие магнитов

На двух сторонах каждого магнита расположены северный полюс и южный полюс . Два магнита притягиваются друг к другу разноимёнными полюсами и отталкиваются одноимёнными. Магниты могут действовать друг на друга даже сквозь вакуум! Всё это напоминает взаимодействие электрических зарядов, однако взаимодействие магнитов не является электрическим . Об этом свидетельствуют следующие опытные факты.

Магнитная сила ослабевает при нагревании магнита. Сила же взаимодействия точечных зарядов не зависит от их температуры.

Магнитная сила ослабевает, если трясти магнит. Ничего подобного с электрически заряженными телами не происходит.

Положительные электрические заряды можно отделить от отрицательных (например, при электризации тел). А вот разделить полюса магнита не получается: если разрезать магнит на две части, то в месте разреза также возникают полюса, и магнит распадается на два магнита с разноимёнными полюсами на концах (ориентированных точно так же, как и полюса исходного магнита).

Таким образом, магниты всегда двухполюсные, они существуют только в виде диполей . Изолированных магнитных полюсов (так называемых магнитных монополей - аналогов электрического заряда)в при роде не существует (во всяком случае, экспериментально они пока не обнаружены). Это, пожалуй, самая впечатляющая асимметрия между электричеством и магнетизмом.

Как и электрически заряженные тела, магниты действуют на электрические заряды. Однако магнит действует только на движущийся заряд; если заряд покоится относительно магнита, то действия магнитной силы на заряд не наблюдается. Напротив, наэлектризованное тело действует на любой заряд,вне зависимости от того, покоится он или движется.

По современным представлениям теории близкодействия, взаимодействие магнитов осуществляется посредством магнитного поля .А именно, магнит создаёт в окружающем пространстве магнитное поле, которое действует на другой магнит и вызывает видимое притяжение или отталкивание этих магнитов.

Примером магнита служит магнитная стрелка компаса. С помощью магнитной стрелки можно судить о наличии магнитного поля в данной области пространства, а также о направлении поля.

Наша планета Земля является гигантским магнитом. Неподалёку от северного географического полюса Земли расположен южный магнитный полюс. Поэтому северный конец стрелки компаса, поворачиваясь к южному магнитному полюсу Земли, указывает на географический север. Отсюда, собственно, и возникло название «северный полюс» магнита.

Линии магнитного поля

Электрическое поле, напомним, исследуется с помощью маленьких пробных зарядов, по действию на которые можно судить о величине и направлении поля. Аналогом пробного заряда в случае магнитного поля является маленькая магнитная стрелка.

Например, можно получить некоторое геометрическое представление о магнитном поле, если разместить в разных точках пространства очень маленькие стрелки компаса. Опыт показывает, что стрелки выстроятся вдоль определённых линий -так называемых линий магнитного поля . Дадим определение этого понятия в виде следующих трёх пунктов.

1. Линии магнитного поля, или магнитные силовые линии - это направленные линии в пространстве, обладающие следующим свойством: маленькая стрелка компаса, помещённая в каждой точке такой линии, ориентируется по касательной к этой линии .

2. Направлением линии магнитного поля считается направление северных концов стрелок компаса, расположенных в точках данной линии .

3. Чем гуще идут линии, тем сильнее магнитное поле в данной области пространства .

Роль стрелок компаса с успехом могут выполнять железные опилки: в магнитном поле маленькие опилки намагничиваются и ведут себя в точности как магнитные стрелки.

Так, насыпав железных опилок вокруг постоянного магнита, мы увидим примерно следующую картину линий магнитного поля (рис. 1 ).

Рис. 1. Поле постоянного магнита

Северный полюс магнита обозначается синим цветом и буквой ; южный полюс - красным цветом и буквой . Обратите внимание, что линии поля выходят из северного полюса магнита и входят в южный полюс: ведь именно к южному полюсу магнита будет направлен северный конец стрелки компаса.

Опыт Эрстеда

Несмотря на то, что электрические и магнитные явления были известны людям ещё с античности, никакой взаимосвязи между ними долгое время не наблюдалось. В течение нескольких столетий исследования электричества и магнетизма шли параллельно и независимо друг от друга.

Тот замечательный факт, что электрические и магнитные явления на самом деле связаны друг с другом, был впервые обнаружен в 1820 году - в знаменитом опыте Эрстеда.

Схема опыта Эрстеда показана на рис. 2 (изображение с сайта rt.mipt.ru). Над магнитной стрелкой ( и - северный и южный полюсы стрелки) расположен металлический проводник, подключённый к источнику тока. Если замкнуть цепь, то стрелка поворачивается перпендикулярно проводнику!
Этот простой опыт прямо указал на взаимосвязь электричества и магнетизма. Эксперименты последовавшие за опытом Эрстеда, твёрдо установили следующую закономерность: магнитное поле порождается электрическими токами и действует на токи .

Рис. 2. Опыт Эрстеда

Картина линий магнитного поля, порождённого проводником с током, зависит от формы проводника.

Магнитное поле прямого провода с током

Линии магнитного поля прямолинейного провода с током являются концентрическими окружностями. Центры этих окружностей лежат на проводе, а их плоскости перпендикулярны проводу (рис. 3 ).

Рис. 3. Поле прямого провода с током

Для определения направления линий магнитного поля прямого тока существуют два альтернативных правила.

Правило часовой стрелки . Линии поля идут против часовой стрелки, если смотреть так, чтобы ток тёк на нас .

Правило винта (или правило буравчика , или правило штопора - это уж кому что ближе;-)). Линии поля идут туда, куда надо вращать винт (с обычной правой резьбой), чтобы он двигался по резьбе в направлении тока .

Пользуйтесь тем правилом, которое вам больше по душе. Лучше привыкнуть к правилу часовой стрелки - вы сами впоследствии убедитесь, что оно более универсально и им проще пользоваться (а потом с благодарностью вспомните его на первом курсе, когда будете изучать аналитическую геометрию).

На рис. 3 появилось и кое-что новое: это вектор , который называется индукцией магнитного поля , или магнитной индукцией . Вектор магнитной индукции является аналогом вектора напряжённости электрического поля: он служит силовой характеристикой магнитного поля, определяя силу, с которой магнитное поле действует на движущиеся заряды.

О силах в магнитном поле мы поговорим позже, а пока отметим лишь, что величина и направление магнитного поля определяется вектором магнитной индукции . В каждой точке пространства вектор направлен туда же,куда и северный конец стрелки компаса, помещённой в данную точку, а именно по касательной к линии поля в направлении этой линии. Измеряется магнитная индукция в теслах (Тл).

Как и в случае электрического поля, для индукции магнитного поля справедлив принцип суперпозиции . Он заключается в том, что индукции магнитных полей , создаваемых в данной точке различными токами, складываются векторно и дают результирующий вектор магнитной индукции: .

Магнитное поле витка с током

Рассмотрим круговой виток, по которому циркулирует постоянный ток . Источник,создающий ток, мы на рисунке не показываем.

Картина линий поля нашего витка будет иметь приблизительно следующий вид (рис. 4 ).

Рис. 4. Поле витка с током

Нам будет важно уметь определять, в какое полупространство (относительно плоскости витка) направлено магнитное поле. Снова имеем два альтернативных правила.

Правило часовой стрелки . Линии поля идут туда, глядя откуда ток кажется циркулирующим против часовой стрелки .

Правило винта . Линии поля идут туда, куда будет перемещаться винт (с обычной правой резьбой), если вращать его в направлении тока .

Как видите, ток и поле меняются ролями - по сравнению с формулировками этих правил для случая прямого тока.

Магнитное поле катушки с током

Катушка получится, если плотно, виток к витку, намотать провод в достаточно длинную спираль (рис. 5 - изображение с сайта en.wikipedia.org). В катушке может быть несколько десятков, сотен или даже тысяч витков. Катушка называется ещё соленоидом .

Рис. 5. Катушка (соленоид)

Магнитное поле одного витка, как мы знаем, выглядит не очень-то просто. Поля? отдельных витков катушки накладываются друг на друга, и, казалось бы, в результате должна получиться совсем уж запутанная картина. Однако это не так: поле длинной катушки имеет неожиданно простую структуру (рис. 6 ).

Рис. 6. поле катушки с током

На этом рисунке ток в катушке идёт против часовой стрелки, если смотреть слева (так будет, если на рис. 5 правый конец катушки подключить к «плюсу» источника тока, а левый конец - к «минусу»). Мы видим, что магнитное поле катушки обладает двумя характерными свойствами.

1. Внутри катушки вдали от её краёв магнитное поле является однородным : в каждой точке вектор магнитной индукции одинаков по величине и направлению. Линии поля - параллельные прямые; они искривляются лишь вблизи краёв катушки, когда выходят наружу.

2. Вне катушки поле близко к нулю. Чем больше витков в катушке - тем слабее поле снаружи неё.

Заметим, что бесконечно длинная катушка вообще не выпускает поле наружу: вне катушки магнитное поле отсутствует. Внутри такой катушки поле всюду является однородным.

Ничего не напоминает? Катушка является «магнитным» аналогом конденсатора. Вы же помните, что конденсатор создаёт внутри себя однородное электрическое поле, линии которого искривляются лишь вблизи краёв пластин, а вне конденсатора поле близко к нулю; конденсатор с бесконечными обкладками вообще не выпускает поле наружу, а всюду внутри него поле однородно.

А теперь - главное наблюдение. Сопоставьте, пожалуйста, картину линий магнитного поля вне катушки (рис. 6 ) с линиями поля магнита на рис. 1 . Одно и то же, не правда ли? И вот мы подходим к вопросу, который, вероятно, у вас уже давно возник: если магнитное поле порождается токами и действует на токи, то какова причина возникновения магнитного поля вблизи постоянного магнита? Ведь этот магнит вроде бы не является проводником с током!

Гипотеза Ампера. Элементарные токи

Поначалу думали, что взаимодействие магнитов объясняется особыми магнитными зарядами, сосредоточенными на полюсах. Но, в отличие от электричества, никто не мог изолировать магнитный заряд; ведь, как мы уже говорили, не удавалось получить по отдельности северный и южный полюс магнита - полюса всегда присутствуют в магните парами.

Сомнения насчёт магнитных зарядов усугубил опыт Эрстеда, когда выяснилось, что магнитное поле порождается электрическим током. Более того, оказалось, что для всякого магнита можно подобрать проводник с током соответствующей конфигурации, такой, что поле этого проводника совпадает с полем магнита.

Ампер выдвинул смелую гипотезу. Нет никаких магнитных зарядов. Действие магнита объясняется замкнутыми электрическими токами внутри него .

Что это за токи? Эти элементарные токи циркулируют внутри атомов и молекул; они связаны с движением электронов по атомным орбитам. Магнитное поле любого тела складывается из магнитных полей этих элементарных токов.

Элементарные токи могут быть беспорядочным образом расположены друг относительно друга. Тогда их поля взаимно погашаются, и тело не проявляет магнитных свойств.

Но если элементарные токи расположены согласованно,то их поля,складываясь,усиливают друг друга. Тело становится магнитом (рис. 7 ; магнитое поле будет направлено на нас; также на нас будет направлен и северный полюс магнита).

Рис. 7. Элементарные токи магнита

Гипотеза Ампера об элементарных токах прояснила свойства магнитов.Нагревание и тряска магнита разрушают порядок расположения его элементарных токов, и магнитные свойства ослабевают. Неразделимость полюсов магнита стала очевидной: в месте разреза магнита мы получаем те же элементарные токи на торцах. Способность тела намагничиваться в магнитном поле объясняется согласованным выстраиванием элементарных токов, «поворачивающихся» должным образом (о повороте кругового тока в магнитном поле читайте в следующем листке).

Гипотеза Ампера оказалась справедливой - это показало дальнейшее развитие физики. Представления об элементарных токах стали неотъемлемой частью теории атома, разработанной уже в ХХ веке - почти через сто лет после гениальной догадки Ампера.